Some scientific research about 538-58-9

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,1,5-Diphenylpenta-1,4-dien-3-one,538-58-9,its application will become more common.

A common heterocyclic compound, 538-58-9,1,5-Diphenylpenta-1,4-dien-3-one, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 538-58-9

General procedure: A mixture of malononitrile (2a) (66 mg, 1 mmol), dibenzylideneacetone (6a) (234 mg, 1 mmol), tributylphosphine (25 mL, 0.1 mmol), and anhydrous CH2Cl2 (5.0 mL) was magnetically stirred in a flask under nitrogen atmosphere at room temperature. The reaction progress was monitored by thin layer chromatography (TLC) until the starting materials were completely consumed. Then, the reaction mixture was diluted with H2O (10 mL) and extracted with Et2O (3×10 mL), the organic phase was washed with brine (10 mL), dried over anhydrous Na2SO4. After the removal of the solvent under reduced pressure, the residue was subjected to chromatography on a silica gel (200-300 mesh) column using petroleum ether/ethyl acetate (4:1) as eluent to afford 7a (286 mg, 95% yield) as a light yellow solid (mp 170-171 C).

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,1,5-Diphenylpenta-1,4-dien-3-one,538-58-9,its application will become more common.

Reference£º
Article; Xu, Da-Zhen; Zhan, Ming-Zhe; Huang, You; Tetrahedron; vol. 70; 2; (2014); p. 176 – 180;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

New learning discoveries about 538-58-9

With the synthetic route has been constantly updated, we look forward to future research findings about 1,5-Diphenylpenta-1,4-dien-3-one,belong chiral-oxygen-ligands compound

1,5-Diphenylpenta-1,4-dien-3-one, cas is 538-58-9, it is a common heterocyclic compound, the chiral-oxygen-ligands compound, its synthesis route is as follows.,538-58-9

General procedure: A mixture of unsaturated ketone 1a (60.7 mg, 0.25 mmol) and phosphonium salt 2a (198.6 mg, 0.45 mmol) in CH3CN (2 mL) was stirred for 5 min. Then DBU (127 muL) in CH3CN (0.5 mL) was added. The reaction mixture was stirred at 60 C for 6 h and then air was introduced with a balloon for another 42 h. After the reaction was completed, the reaction mixture was filtered through a short silica gel column and washed with DCM. The filtrate was concentrated under reduced pressure and the residue was purified by flash chromatography (PE/EtOAc, 60/1) to afford 3a as a colorless oil (69.3 mg, 86% yield).

With the synthetic route has been constantly updated, we look forward to future research findings about 1,5-Diphenylpenta-1,4-dien-3-one,belong chiral-oxygen-ligands compound

Reference£º
Article; Shu, Zhen-Cao; Zhu, Jian-Bo; Liao, Saihu; Sun, Xiu-Li; Tang, Yong; Tetrahedron; vol. 69; 1; (2013); p. 284 – 292;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

The origin of a common compound about 4254-15-3

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,4254-15-3,(S)-Propane-1,2-diol,its application will become more common.

A common heterocyclic compound, 4254-15-3,(S)-Propane-1,2-diol, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 4254-15-3

Step 1 To (S)-propane diol (4.89 g, 64.2 mmol) in DCM (20 ml_) at-20 C (CO2/ ethylene glycol bath) was added TEA (11.2 mL, 80.3 mmol) followed by p-toluenesulfonyl chloride (12.3 g, 64.3 mmol) in DCM (26 mL) dropwise over 30 minutes. Allowed the cold bath to expire while stirring for 26 h. Added DCM and washed the reaction with 1 N HCI, water, and brine. Dried (MgSO4) the organic layer, filtered, and concentrated in vacuo. The residue was purified by silica gel chromatography (0-40% EtOAc/Hex over 40 minutes) to provide the tosylate (8.37 g, 36 .4 mmol).

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,4254-15-3,(S)-Propane-1,2-diol,its application will become more common.

Reference£º
Patent; SCHERING CORPORATION; WO2009/5646; (2009); A2;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Simple exploration of 538-58-9

As the paragraph descriping shows that 538-58-9 is playing an increasingly important role.

538-58-9, 1,5-Diphenylpenta-1,4-dien-3-one is a chiral-oxygen-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,538-58-9

General procedure: Method A: A mixture of appropriate derivatives of both 1,3-diaryl-2-propen-1-ones (1.0 equiv.) and aryl hydrazine (1.1 equiv.) was taken in a 100mL round-bottomed flask in 95% ethanol (25mL). Addition of a drop of H2SO4 initiated the precipitation. The reaction mixture was refluxed for 3 to 5h and cooled to room temperature to form precipitate in most of the cases. The residue was filtered, washed with water and dried under vacuum. In some cases where precipitate was not observed after cooling to room temperature, water was added to obtain precipitate.

As the paragraph descriping shows that 538-58-9 is playing an increasingly important role.

Reference£º
Article; Ananthnag, Guddekoppa S.; Adhikari, Adithya; Balakrishna, Maravanji S.; Catalysis Communications; vol. 43; (2014); p. 240 – 243;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Some scientific research about 4254-15-3

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,(S)-Propane-1,2-diol,4254-15-3,its application will become more common.

A common heterocyclic compound, 4254-15-3,(S)-Propane-1,2-diol, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 4254-15-3

Compound M31:; To a solution of (S)-1 ,2-propandiol (5 mmol) in 5 ml_ of anhydrous CH2CI2 were added 2-methyl-1-butene (5.5 mmol) and BF3 etherate (0.5 mmol) at room temperature. The stirring was continued for another 24 h. The solvent was removed by vacuum, and the residue was purified by chromatograph on silica gel to afford intermediate (4 mmol, 80 percent yield) as oil. Then, to a suspension of this intermediate and imidazole (6 mmol) in 6 ml_ of anhydrous THF was added 4.8 mL of TBDMSCI (1 M in THF) at 0 0C. The solvent was removed by vacuum, and the residue was re-dissolved in Et2O. The heterogeneous mixture was filtered over a pad of Celite. The filtrate was washed with 1N HCI, water and brine, dried over Na2SO4 and concentrated in vacuo. The residue was chromatographed to give pure M31 (0.34 mmol, 85percent yield) as oil.

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,(S)-Propane-1,2-diol,4254-15-3,its application will become more common.

Reference£º
Patent; UNIVERSITY OF CONNECTICUT; WO2006/44381; (2006); A2;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Downstream synthetic route of 1,5-Diphenylpenta-1,4-dien-3-one

With the synthetic route has been constantly updated, we look forward to future research findings about 1,5-Diphenylpenta-1,4-dien-3-one,belong chiral-oxygen-ligands compound

As a common heterocyclic compound, it belongs to quinuclidine compound,Quinuclidine-4-carboxylic acid hydrochloride,40117-63-3,Molecular formula: C8H14ClNO299,mainly used in chemical industry, its synthesis route is as follows.,538-58-9

General procedure: To a stirred solution of alpha,beta-unsaturated carbonyl compound (1 mmol) in DCM was added thiophenol (2.5 mmol, 275 mg) followed by sodium metal (2.5 mmol, 57.5 mg) at room temperature. The reaction mixture was stirred appropriate time given in Table 3. TLC monitoring, after completion of reaction filtered excess amount of sodium then the reaction mixture was quenched with water and extracted with DCM (3 ¡Á 8 ml), washed with brine solutions (10 ml). The combined organic layers dried over anhydrous Na2SO4 and the solvent evaporated in vacuo. Pure sulfide was obtained by recrystallization from methanol.

With the synthetic route has been constantly updated, we look forward to future research findings about 1,5-Diphenylpenta-1,4-dien-3-one,belong chiral-oxygen-ligands compound

Reference£º
Article; Konduru, Naveen Kumar; Dey, Sunita; Sajid, Mohammad; Owais, Mohammad; Ahmed, Naseem; European Journal of Medicinal Chemistry; vol. 59; (2013); p. 23 – 30;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

New downstream synthetic route of 4254-15-3

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,(S)-Propane-1,2-diol,4254-15-3,its application will become more common.

A common heterocyclic compound, 4254-15-3,(S)-Propane-1,2-diol, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 4254-15-3

(S)-Methylethylene Bis(methylsulfonate), CAS 270577-16-7, Compound A Scheme 1,was prepared from (S)-(+)-1,2-propanediol (CAS 4254-15-3, Sigma Aldrich Chemical Company) and methane sulfonyl chloride (CAS 124-63-O, Sigma Aldrich Chemical Company) according to the procedure of T. Harada, T. Mai, T. Tuyet, and A. Oku, Organic Letters (2000), 2(9), 1319-1322.

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,(S)-Propane-1,2-diol,4254-15-3,its application will become more common.

Reference£º
Patent; Kent State University; Kent Displays Incorporated; US2012/273725; (2012); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Some tips on 538-58-9

With the complex challenges of chemical substances, we look forward to future research findings about 1,5-Diphenylpenta-1,4-dien-3-one

As a common heterocyclic compound, it belongs to chiral-oxygen-ligands compound, name is 1,5-Diphenylpenta-1,4-dien-3-one, and cas is 538-58-9, its synthesis route is as follows.,538-58-9

General procedure: A flask equipped a magnetic stirring bar was charged with alpha,beta-unsaturatedketone 1 (1.0 mmol), tosylhydrazine(1.1 mmol), K2CO3 (1.5 mmol),and dioxane (2 ml). The reaction mixture was stirredunder a nitrogen atmosphere at 110 Cfor 24 h. The reaction mixture was cooled to room temperature; the reaction mixture was extracted with diethylether (5¡Á3 ml). The combined extracts was washed withbrine and dried over MgSO4, and the crude product was adsorbed ontosilica gel and purified by column chromatography (silica gel, petroleum ether:ethyl acetate 20:1) gave the pure saturated carbonyl compound 4.

With the complex challenges of chemical substances, we look forward to future research findings about 1,5-Diphenylpenta-1,4-dien-3-one

Reference£º
Article; Zhou, Xiaomeng; Li, Xiaokang; Zhang, Wei; Chen, Junmin; Tetrahedron Letters; vol. 55; 37; (2014); p. 5137 – 5140;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

A new synthetic route of (S)-Propane-1,2-diol

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,4254-15-3,(S)-Propane-1,2-diol,its application will become more common.

A common heterocyclic compound, 4254-15-3,(S)-Propane-1,2-diol, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 4254-15-3

Under an atmosphere of argon, trifluoromethanesulfonic acid (485 muEpsilon; 822 mg; 5.47 mmol; 5.0 eq) was added dropwise at 0-5¡ãC (ice/brine bath) to a solution of l-[2-chloro-4-(4-chlorophenoxy)phenyl]-2-(5- fluoroimidazol-l-yl)ethanone (400 mg ; 1.09 mmol) and (2S)-propane-l,2-diol (3.33 g; 43.8 mmol; 40.0 eq) in anhydrous toluene (3.0 mL). The resulting mixture was allowed to warm up to room temperature, then refluxed for 20h. Thereafter the reaction mixture was allowed to cool down to room temperature, diluted with ethyl acetate, washed with saturated aqueous sodium bicarbonate, the combined organic layers were – – dried (MgSO i) and concentrated to dryness in vacuo. The residue was purified by chromatography over silica gel, eluted with a mixture of dichloromethane/methanol (100:0 to 90: 10). Evaporation of the solvents in vacuo afforded 271 mg (54percent) of l-[[2-[2-chloro-4-(4-chlorophenoxy)phenyl]-4-methyl-l,3-dioxolan-2- yl]methyl]-5-fluoro-imidazole (approx. 59:41 mixture of diastereoisomers) as a colourless solid. MS (ESI): 423.1 ([M+H]+)

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,4254-15-3,(S)-Propane-1,2-diol,its application will become more common.

Reference£º
Patent; BAYER CROPSCIENCE AKTIENGESELLSCHAFT; BAYER AKTIENGESELLSCHAFT; COQUERON, Pierre-Yves; BERNIER, David; GENIX, Pierre; MILLER, Ricarda; NAUD, Sebastien; WITTROCK, Sven; BRUNET, Stephane; KENNEL, Philippe; MEISSNER, Ruth; WACHENDORFF-NEUMANN, Ulrike; GOeRTZ, Andreas; (104 pag.)WO2018/60088; (2018); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

The important role of 538-58-9

With the complex challenges of chemical substances, we look forward to future research findings about 1,5-Diphenylpenta-1,4-dien-3-one

Name is 1,5-Diphenylpenta-1,4-dien-3-one, as a common heterocyclic compound, it belongs to chiral-oxygen-ligands compound, and cas is 538-58-9, its synthesis route is as follows.,538-58-9

General procedure: A mixture of divinyl ketone (0.5 mmol), indolin-2-one (0.6 mmol)and cesium carbonate (0.5 mmol) in methylene chloride (5 mL) wasstirred at room temperature for the appropriate time. Then the resultingmixture was extracted with ethyl acetate (2 ¡Á 5 mL). The combinedorganic layers were dried over anhydrous magnesium sulfate andconcentrated under reduced pressure. The residues were isolated bycolumn chromatography using petroleum ether and ethyl acetate (v/v5 : 1) as eluent to give the pure product.2,6-Diphenylspiro[cyclohexane-1,3?-indoline]-2?,4-dione (2a): Whitesolid; m.p. 216-218 C; 1H NMR (600 MHz, CDCl3): delta 8.70 (s, 1H),7.23-7.20 (m, 3H), 7.00-6.95 (m, 6H), 6.90 (d, J = 7.3 Hz, 2H), 6.72 (t,J = 7.6 Hz, 1H), 6.56 (d, J = 7.7 Hz, 1H), 6.21 (d, J = 7.6 Hz, 1H), 3.96(t, J = 14.3 Hz, 1H), 3.80 (dd, J = 14.0, 3.7 Hz, 1H), 3.69 (t, J = 6.0 Hz,1H), 3.62 (dd, J = 16.1, 6.0 Hz, 1H), 2.99 (dd, J = 16.1, 5.9 Hz, 1H),2.72 (dd, J = 15.8, 3.4 Hz, 1H); 13C NMR (150 MHz, CDCl3): delta 211.4,180.9, 140.2, 139.9, 138.0, 130.0, 129.3, 128.2, 128.1, 128.0, 127.9,127.4, 127.2, 125.9, 121.4, 109.3, 56.0, 46.6, 45.5, 42.7, 41.9; Anal.calcd for C25H21NO2: C, 81.72; H, 5.76; N, 3.81; found: C, 81.66; H,5.78; N, 3.80%.

With the complex challenges of chemical substances, we look forward to future research findings about 1,5-Diphenylpenta-1,4-dien-3-one

Reference£º
Article; Li, Zheng; Li, Jiasheng; Yang, Jingya; Journal of Chemical Research; vol. 41; 3; (2017); p. 168 – 171;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate