Can You Really Do Chemisty Experiments About 616-43-3

Here is a brief introduction to this compound(616-43-3)Electric Literature of C5H7N, if you want to know about other compounds related to this compound(616-43-3), you can read my other articles.

Electric Literature of C5H7N. Aromatic compounds can be divided into two categories: single heterocycles and fused heterocycles. Compound: 3-Methyl-1H-pyrrole, is researched, Molecular C5H7N, CAS is 616-43-3, about Different chemical composition of free light, occluded light and extractable SOM fractions in soils of Cerrado and tilled and untilled fields, Minas Gerais, Brazil: a pyrolysis-GC/MS study. Author is Buurman, P.; Roscoe, R..

To investigate both the effect of land-use systems on SOM characteristics and the effect of occlusion in aggregates on chem. composition of the occluded fraction, SOM fractions of soils under Cerrado, no-tillage and conventional tillage, were investigated. Free light, occluded light and extractable organic matter from native Cerrado and from tilled and unfilled fields under maize and bean rotation were separated and chem. analyzed by pyrolysis-GC/MS. Ploughing incorporated more fresh OM into the soil than natural biol. activity. Degradation of the occluded light fraction was not fully halted, but was different from that of SOM in the extractable fraction. Recalcitrant compounds had low abundances in the free light and extracted fractions, but were more abundant in the occluded light fraction, where the more accessible compounds were depleted by microbial decomposition Because of intense decomposition, the extracted fractions did not differentiate between land uses, but differences in the light fractions were significant. The results indicate that the decay of the occluded fraction is different from that of the free light fraction: non-ideal circumstances of decay caused a relative accumulation of potentially recalcitrant compounds When considering the rapid turnover of all components in the soil extracts, disruption of aggregates will probably cause rapid decay of the occluded fraction. The distribution of pyrolysis products that can be ascribed to charred wood (polyaromatics) indicates that this fraction is readily decayed if not occluded. Selective decomposition in the occluded fraction may cause a shift in δ13C that should not be misinterpreted.

Here is a brief introduction to this compound(616-43-3)Electric Literature of C5H7N, if you want to know about other compounds related to this compound(616-43-3), you can read my other articles.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Awesome and Easy Science Experiments about 616-43-3

Here is a brief introduction to this compound(616-43-3)Safety of 3-Methyl-1H-pyrrole, if you want to know about other compounds related to this compound(616-43-3), you can read my other articles.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Conjugation phenomena in α- and β-substituted pyrroles studied by infrared and ultraviolet spectrophotometry》. Authors are Scrocco, Marisa; Caglioti, Luciano; Caglioti, V..The article about the compound:3-Methyl-1H-pyrrolecas:616-43-3,SMILESS:CC1=CNC=C1).Safety of 3-Methyl-1H-pyrrole. Through the article, more information about this compound (cas:616-43-3) is conveyed.

cf. C.A. 51, 17455e. Effects of ring substituents on the NH stretching frequency v(NH) of pyrroles (I) are further investigated. 2-Me, 3-Me, 2,4-Me2, and 2,5-Me2 substitutions cause only a very slight increase in v(NH) of I, an effect opposite to hyperconjugation. The v(CO) of the 3-CO2Me compound previously given as 1700 cm.-1 was resolved into 2 peaks, 1712 (strong) and 1698; similarly the 2-CO2Me compound had maximum at 1715 and 1697 (strong), the lower ν presumably vibrations of internal chelates. The following data were similarly interpreted: (I substituents, strong v(NH), weak v(NH), strong v(CO), weak v(CO), ultraviolet maximum (log ε) and ultraviolet maximum (log ε) given): 3-CO2Me, 3490, 3320, 1712, 1698 cm.-1, 240 mμ (3.82), and – (-); 2-CO2Me, 3326, 3472, 1697, 1715 cm.-1, 261 (4.22) and 234.5 mμ (3.82); 2-CHO, 3284, 3468, 1650, 1666 cm.-1, 279 (4.27), and 246 mμ (3.73); 2-Ac, 3294, 3466, 1640, 1662 cm.-1, 276.5 (4.21) and 247 mμ (3.61); 2-COCH2Cl, -, -, 1639, 1663 cm.-1, 288.5 (4.3) and 246 mμ (3.6); 2-CO2Me, 4-NO2, -, -, -, -, 229 (4.26) and 285 mμ (3.75); 2-Ac, 5-CN, -, -, -, -, 248 (3.85) and 265 mμ (3.80).

Here is a brief introduction to this compound(616-43-3)Safety of 3-Methyl-1H-pyrrole, if you want to know about other compounds related to this compound(616-43-3), you can read my other articles.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Chemical Properties and Facts of 616-43-3

Here is a brief introduction to this compound(616-43-3)Name: 3-Methyl-1H-pyrrole, if you want to know about other compounds related to this compound(616-43-3), you can read my other articles.

Sun, Zhenchun; Yang, Ni; Liu, Chujiao; Linforth, Robert S. T.; Zhang, Xiaoming; Fisk, Ian D. published an article about the compound: 3-Methyl-1H-pyrrole( cas:616-43-3,SMILESS:CC1=CNC=C1 ).Name: 3-Methyl-1H-pyrrole. Aromatic heterocyclic compounds can be classified according to the number of heteroatoms or the size of the ring. The authors also want to convey more information about this compound (cas:616-43-3) through the article.

The aroma stability of fresh coffee brew was investigated during storage over 60 min, there was a substantial reduction in available 2-furfurylthiol (2-FFT) (84%), methanethiol (72%), 3-methyl-1H-pyrrole (68%) and an increase of 2-pentylfuran (65%). It is proposed that 2-FFT was reduced through reversible chem. binding and irreversible losses. Bound 2-FFT was released after cysteine addition, thereby demonstrating that a reversible binding reaction was the dominant mechanism of 2-FFT loss in natural coffee brew. The reduction in available 2-FFT was investigated at different pH and temperatures At high pH, the reversible binding of 2-FFT was shown to protect 2-FFT from irreversible losses, while irreversible losses led to the reduction of total 2-FFT at low pH. A model reaction system was developed and a potential conjugate, hydroxyhydroquinone, was reacted with 2-FFT. Hydroxyhydroquinone also showed 2-FFT was released after cysteine addition at high pH.

Here is a brief introduction to this compound(616-43-3)Name: 3-Methyl-1H-pyrrole, if you want to know about other compounds related to this compound(616-43-3), you can read my other articles.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

A new application about 616-43-3

Here is a brief introduction to this compound(616-43-3)Application of 616-43-3, if you want to know about other compounds related to this compound(616-43-3), you can read my other articles.

Most of the compounds have physiologically active properties, and their biological properties are often attributed to the heteroatoms contained in their molecules, and most of these heteroatoms also appear in cyclic structures. A Journal, Desalination called Optimised coagulation using aluminium sulfate for the removal of dissolved organic carbon, Author is Chow, Christopher W. K.; van Leeuwen, John A.; Fabris, Rolando; Drikas, Mary, which mentions a compound: 616-43-3, SMILESS is CC1=CNC=C1, Molecular C5H7N, Application of 616-43-3.

Coagulation experiments at pH values ranging from 3 to 7 were conducted on raw water samples from four Australian reservoirs-Hope Valley, Myponga, Moorabool and Mt Zero-to assess the removal of natural organic matter (NOM) with alum. The aim was to characterize the NOM in these water sources that is highly recalcitrant to removal by alum coagulation. The selection of these water sources covered a range in raw water quality varying in inorganic and organic composition and character. NOM in both raw and treated waters was characterized by several techniques including specific UV absorbance (SUVA), high performance size exclusion chromatog. (HPSEC) and pyrolysis-gas chromatog. mass spectrometry (Py-GC-MS). The results can provide better understanding of the removal limitations of each treatment step and the knowledge will allow design engineers to select a suitable combined treatment process for optimum NOM removal. Despite the fact that the organic character of the four source waters were different, results showed that after optimized alum coagulation all four waters had a similar character. The mol. weight distribution anal. (HPSEC) indicated alum coagulation preferentially removed the higher mol. weight UV absorbing compounds while those remaining in the treated waters had the properties of lower apparent mol. weights (about 500-700 Daltons) and less UV absorbance. Py-GC-MS analyses of NOM in these waters before and after treatment indicated that polysaccharides and their derivatives are recalcitrant to removal with alum coagulation. Generally, the findings indicate that the character of the NOM is an important factor in determining its treatability.

Here is a brief introduction to this compound(616-43-3)Application of 616-43-3, if you want to know about other compounds related to this compound(616-43-3), you can read my other articles.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Awesome Chemistry Experiments For 56413-95-7

Here is a brief introduction to this compound(56413-95-7)Safety of 5,6-Dichloropyrazine-2,3-dicarbonitrile, if you want to know about other compounds related to this compound(56413-95-7), you can read my other articles.

Safety of 5,6-Dichloropyrazine-2,3-dicarbonitrile. Aromatic compounds can be divided into two categories: single heterocycles and fused heterocycles. Compound: 5,6-Dichloropyrazine-2,3-dicarbonitrile, is researched, Molecular C6Cl2N4, CAS is 56413-95-7, about New highly soluble phenoxy-substituted phthalocyanine and azaphthalocyanine derivatives: Synthesis, photochemical and photophysical studies and atypical aggregation behavior. Author is Makhseed, Saad; Tuhl, Ahmad; Samuel, Jacob; Zimcik, Petr; Al-Awadi, Nouria; Novakova, Veronika.

Zn phthalocyanines and corresponding aza-analog azaphthalocyanines substituted with peripheral 2,6-diisopropylphenoxy substituents containing different functional groups (Br, OCH3, and OH) were synthesized and their photophys. properties were studied. UV-visible and 1H NMR analyses confirmed the nonaggregation behavior of the prepared complexes in most organic solvents. All studied compounds showed good photophys. and photochem. properties in THF and DMF with ΦF values at 0.22-0.44 and ΦΔ values ranging between 0.42 and 0.57. Hydroxylated compounds showed good solubility in polar solvents including EtOH, MeOH, acetone and even in aqueous EtOH mixtures Absorption spectra in aqueous EtOH indicated presence of only monomers even at very low EtOH content in H2O (0.5% of EtOH in H2O). Despite this, no fluorescence occurred from ∼50% of EtOH in H2O suggesting presence of aggregates that do not differ from monomers in a shape of absorption spectra.

Here is a brief introduction to this compound(56413-95-7)Safety of 5,6-Dichloropyrazine-2,3-dicarbonitrile, if you want to know about other compounds related to this compound(56413-95-7), you can read my other articles.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Sources of common compounds: 616-43-3

Here is a brief introduction to this compound(616-43-3)Safety of 3-Methyl-1H-pyrrole, if you want to know about other compounds related to this compound(616-43-3), you can read my other articles.

Most of the compounds have physiologically active properties, and their biological properties are often attributed to the heteroatoms contained in their molecules, and most of these heteroatoms also appear in cyclic structures. A Journal, Article, Diagnostics called TD-GC-MS investigation of the VOCs released from blood plasma of dogs with cancer, Author is Selyanchyn, Roman; Nozoe, Takuma; Matsui, Hidetaka; Kadosawa, Tsuyoshi; Lee, Seung-Woo, which mentions a compound: 616-43-3, SMILESS is CC1=CNC=C1, Molecular C5H7N, Safety of 3-Methyl-1H-pyrrole.

An anal. TD-GC-MS method was developed and used for the assessment of volatile organic compounds (VOCs) released from the blood plasma of dogs with/without cancer. VOCs released from 40 samples of diseased blood and 10 control samples were compared in order to examine the difference between both sample groups that were showing qual. similar results independent from the disease’s presence. However, mild disturbances in the spectra of dogs with cancer in comparison with the control group were observed, and six peaks (tentatively identified by comparison with mass spectral library as hexanal, octanal, toluene, 2-butanone, 1-octen-3-ol and pyrrole) revealed statistically significant differences between both sample groups, thereby suggesting that these compounds are potential biomarkers that can be used for cancer diagnosis based on the blood plasma TD-GC-MS anal. Statistical comparison with the application of principal component anal. (PCA) provided accurate discrimination between the cancer and control groups, thus demonstrating stronger biochem. perturbations in blood plasma when cancer is present.

Here is a brief introduction to this compound(616-43-3)Safety of 3-Methyl-1H-pyrrole, if you want to know about other compounds related to this compound(616-43-3), you can read my other articles.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Can You Really Do Chemisty Experiments About 3685-23-2

Here is a brief introduction to this compound(3685-23-2)SDS of cas: 3685-23-2, if you want to know about other compounds related to this compound(3685-23-2), you can read my other articles.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Activation of the amide group by acylation. V. Inclusion of amino acid residues into linear and cyclic peptides》. Authors are Antonov, V. K.; Agadzhanyan, Ts. E.; Telesnina, T. R.; Shemyakin, M. M..The article about the compound:cis-4-Aminocyclohexane carboxylic acidcas:3685-23-2,SMILESS:N[C@H]1CC[C@H](CC1)C(O)=O).SDS of cas: 3685-23-2. Through the article, more information about this compound (cas:3685-23-2) is conveyed.

cf. CA 63, 16255f. Dipeptides and lactams acylated at the amide-N by amino acid residues were shown to isomerize to give corresponding linear or cyclic peptides through intermediate azocyclols, which can also undergo dehydration to form acylamidines. The transannular interaction of amide groups in 9-10-membered cyclopeptides can also result in similar acylamidines; such a process takes place during mass spectrometry of cyclopeptides. N-Phthaloylglycylglycine Et ester and azidoacetyl chloride refluxed in MePh 10 hrs. gave after filtration and evaporation 46% N-azidoacetyl-N’-phthaloylglycylglycine Et ester, m. 115-16°. Similarly were prepared 36% N-azidoacetyl-N’-phthaloylglycyl-L-leucine Et ester, m. 118-19°. The former treated with 28% HBr in AcOH overnight in the cold, diluted with Et2O, and the resulting precipitate (I) treated with Et3N in tetrahydrofuran gave 70% N-phthaloylglycylglycylglycine Et ester, m. 228-9°. Similarly was prepared N-phthaloylglycylglycyl-L-leucine Et ester, m. 155-6°. I and H2O in 5 min. gave 73% 2-phthaloylaminomethyl-3-carbethoxymethyl-Δ1-imidazolin-4-one, m. 153-4°. Similarly was obtained 63% 2-phthaloylaminomethyl-3-(1-carbethoxy-3-methylbutyl)-Δ1-imidazolin-4-one, m. 117-18°. Carbobenzoxy-β-alanyl chloride and butyrolactam in Et2O were treated at 5° with Et3N to yield in 1 day at 20° 58% N-carbobenzoxy-β-alanylbutyrolactam (II), m. 94-5°. Similar reaction with valerolactam gave N-carbobenzoxy-β-alanylvalerolactam, m. 60-1°. Similarly was prepared 50% N-carbobenzoxy-β-alanylcaprolactam, m. 60-1°. II hydrogenated over Pd in Et2O gave 38% cyclo(β-alanyl-γ-aminobutyryl) (III), m. 173°, also formed from II by treatment with 27% HBr in AcOH 45 min.; HBr salt m. 119-20°. Similarly was obtained cyclo(β-alanyl-δ-aminovaleryl) (IV), m. 187°, and 61% cyclo(β-alanyl-ε-aminocaproyl) (V), m. 259°. III heated in xylene 1 hr. under azeotropic conditions of H2O removal gave 68% 1,2-trimethylene-6-oxo-1,4,5,6-tetrahydropyrimidine (IIIa), b12 152-4°. IV similarly gave 45% 1,2-tetramethylene-6-oxo-1,4,5,6-tetrahydropyrimidine (IVa), b12 160° (no reaction took place in ο-Cl2C6H4 in 4 hrs. with V). III heated with H2O 5 min. gave 80% N-[1-aza-1-cyclopenten-2-yl]-3-aminopropionic acid (VI), decomposed 186-7°. H2NCH2CH2CO2H in MeOH was treated with O-methylbutyrolactam and gave after heating 10 min. 97% VI. Similarly O-methylvalerolactam gave 95% N-[1-aza-1-cyclohexen-2-yl]-3-aminopropionic acid, m. 186°, which heated with removal of H2O in Cl2C6H4 gave 91% IVa. Similarly O-methylcaprolactam gave 93% N-[1-aza-1-cyclohepten-2-yl]-3-aminopropionic acid, m. 200-1°, which heated in Cl2C6H4 gave 12% cyclo(β-alanyl-ε-aminocapropyl) and 80% 1,2-pentamethylene-6-oxo-1,4,5,6-tetrahydropyrimidine, b10 185-90°, m. 35°. Heating VI in xylene with removal of H2O gave IIIa. The latter kept with H2O 2 days gave VI, while H2O-Ag2O gave 32% VI and 54% cyclo(β-alanyl-γ-aminobutyryl). The above analogs of VI reacted similarly.

Here is a brief introduction to this compound(3685-23-2)SDS of cas: 3685-23-2, if you want to know about other compounds related to this compound(3685-23-2), you can read my other articles.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Discover the magic of the 56413-95-7

Here is a brief introduction to this compound(56413-95-7)Application In Synthesis of 5,6-Dichloropyrazine-2,3-dicarbonitrile, if you want to know about other compounds related to this compound(56413-95-7), you can read my other articles.

So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic.Zimcik, Petr; Miletin, Miroslav; Ponec, Jan; Kostka, Miroslav; Fiedler, Zdenek researched the compound: 5,6-Dichloropyrazine-2,3-dicarbonitrile( cas:56413-95-7 ).Application In Synthesis of 5,6-Dichloropyrazine-2,3-dicarbonitrile.They published the article 《Synthesis and studies on photodynamic activity of new water-soluble azaphthalocyanines》 about this compound( cas:56413-95-7 ) in Journal of Photochemistry and Photobiology, A: Chemistry. Keywords: photodynamic activity water soluble azaphthalocyanine derivative; photosensitized photooxidation phenylisobenzofurane azaphthalocyanine derivative singlet oxygen generation. We’ll tell you more about this compound (cas:56413-95-7).

Aza analogs of phthalocyanines (AzaPc’s) bearing four long chains with carboxy groups at the end and four “”bulky”” diethylamino groups on periphery were synthesized and characterized. Their sodium salts are very soluble in water. The first studies on photodynamic activity of this tetrapyrazinoporphyrazines (a type of AzaPc) are presented. The dye-sensitized photooxidation of 1,3-diphenylisobenzofurane via 1O2 was studied in pyridine. Their photodynamic activity in vitro was not detected due to the aggregation behavior of these compounds in water.

Here is a brief introduction to this compound(56413-95-7)Application In Synthesis of 5,6-Dichloropyrazine-2,3-dicarbonitrile, if you want to know about other compounds related to this compound(56413-95-7), you can read my other articles.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

What I Wish Everyone Knew About 3685-23-2

Here is a brief introduction to this compound(3685-23-2)Synthetic Route of C7H13NO2, if you want to know about other compounds related to this compound(3685-23-2), you can read my other articles.

Synthetic Route of C7H13NO2. The protonation of heteroatoms in aromatic heterocycles can be divided into two categories: lone pairs of electrons are in the aromatic ring conjugated system; and lone pairs of electrons do not participate. Compound: cis-4-Aminocyclohexane carboxylic acid, is researched, Molecular C7H13NO2, CAS is 3685-23-2, about Effects of some conformationally restricted GABA analogs on GABA membrane binding and nerve ending transport. Author is Hitzemann, Robert J.; Loh, Horace H..

By using a series of aminocyclopentane- and aminocyclohexanecarboxylic acids, as well as some naturally occurring amino acids, it was possible to determine some aspects of the spatial topog. of the GABA [56-12-2] membrane binding and transport sites in the rat brain. The Na-independent GABA binding site had a different spatial topog. than the Na-dependent binding site in that (±)-trans-3-aminocyclopentanecarboxylic acid (I) [19297-28-0] was 7-fold more potent than (±)-cis-3-aminocyclopentanecarboxylic acid (II) [49805-32-5] in inhibiting Na-independent binding, but only 1.6 times more potent in inhibiting Na-dependent binding. The nerve ending GABA transport site was similar to the Na-dependent GABA binding site in that it accommodated both I and II. However, the transport site differed from the binding site in that II was a potent inhibitor of transport but a weak inhibitor of binding. In addition to the differences in spatial characteristics, differences in the subcellular distribution of Na-independent and Na-dependent binding sites were observed The former were found primarily in the nerve ending-mitochondrial fraction, whereas the latter were primarily found in the microsomal fraction.

Here is a brief introduction to this compound(3685-23-2)Synthetic Route of C7H13NO2, if you want to know about other compounds related to this compound(3685-23-2), you can read my other articles.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Top Picks: new discover of 56413-95-7

Here is a brief introduction to this compound(56413-95-7)Category: chiral-oxygen-ligands, if you want to know about other compounds related to this compound(56413-95-7), you can read my other articles.

The chemical properties of alicyclic heterocycles are similar to those of the corresponding chain compounds. Compound: 5,6-Dichloropyrazine-2,3-dicarbonitrile, is researched, Molecular C6Cl2N4, CAS is 56413-95-7, about Functional dyes derived from 2,3-dichloro-5,6-dicyanopyrazine, the main research direction is cyanopyrazine dye synthesis nucleophilic substitution; amine nucleophilic substitution dichlorodicyanopyrazine.Category: chiral-oxygen-ligands.

Chlorine nucleophilic substitution of 2,3-dichloro-5,6-dicyanopyrazine (I) with amines yielded 8 mono- or disubstituted derivatives that were tested for their second harmonic generation (SHG) and biol. activity. Triethylamine reaction with I gave a new enamine product that was characterized by NMR and IR spectroscopy. Effectiveness in controlling some plant diseases was observed

Here is a brief introduction to this compound(56413-95-7)Category: chiral-oxygen-ligands, if you want to know about other compounds related to this compound(56413-95-7), you can read my other articles.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate