Continuously updated synthesis method about 616-43-3

In addition to the literature in the link below, there is a lot of literature about this compound(3-Methyl-1H-pyrrole)Name: 3-Methyl-1H-pyrrole, illustrating the importance and wide applicability of this compound(616-43-3).

Name: 3-Methyl-1H-pyrrole. The protonation of heteroatoms in aromatic heterocycles can be divided into two categories: lone pairs of electrons are in the aromatic ring conjugated system; and lone pairs of electrons do not participate. Compound: 3-Methyl-1H-pyrrole, is researched, Molecular C5H7N, CAS is 616-43-3, about Aroma binding and stability in brewed coffee: A case study of 2-furfurylthiol. Author is Sun, Zhenchun; Yang, Ni; Liu, Chujiao; Linforth, Robert S. T.; Zhang, Xiaoming; Fisk, Ian D..

The aroma stability of fresh coffee brew was investigated during storage over 60 min, there was a substantial reduction in available 2-furfurylthiol (2-FFT) (84%), methanethiol (72%), 3-methyl-1H-pyrrole (68%) and an increase of 2-pentylfuran (65%). It is proposed that 2-FFT was reduced through reversible chem. binding and irreversible losses. Bound 2-FFT was released after cysteine addition, thereby demonstrating that a reversible binding reaction was the dominant mechanism of 2-FFT loss in natural coffee brew. The reduction in available 2-FFT was investigated at different pH and temperatures At high pH, the reversible binding of 2-FFT was shown to protect 2-FFT from irreversible losses, while irreversible losses led to the reduction of total 2-FFT at low pH. A model reaction system was developed and a potential conjugate, hydroxyhydroquinone, was reacted with 2-FFT. Hydroxyhydroquinone also showed 2-FFT was released after cysteine addition at high pH.

In addition to the literature in the link below, there is a lot of literature about this compound(3-Methyl-1H-pyrrole)Name: 3-Methyl-1H-pyrrole, illustrating the importance and wide applicability of this compound(616-43-3).

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

The Best Chemistry compound: 56413-95-7

In addition to the literature in the link below, there is a lot of literature about this compound(5,6-Dichloropyrazine-2,3-dicarbonitrile)HPLC of Formula: 56413-95-7, illustrating the importance and wide applicability of this compound(56413-95-7).

The three-dimensional configuration of the ester heterocycle is basically the same as that of the carbocycle. Compound: 5,6-Dichloropyrazine-2,3-dicarbonitrile(SMILESS: N#CC1=NC(Cl)=C(Cl)N=C1C#N,cas:56413-95-7) is researched.SDS of cas: 3685-23-2. The article 《Studies on herbicidal 2,3-dicyanopyrazines. Part II. Structure-activity relationships of herbicidal 5-ethylamino- and 5-propylamino-2,3-dicyanopyrazines》 in relation to this compound, is published in Agricultural and Biological Chemistry. Let’s take a look at the latest research on this compound (cas:56413-95-7).

Sixty-eight 6-substituted 5-ethylamino- and 5-propylamino-2,3-dicyanopyrazines were synthesized and their herbicidal activities against barnyard grass (Echinochloa crus-galii) were measured in pot tests. The most active compound was 2,3-dicyano-5-propylamino-6-(m-chlorophenyl)pyrazine  [72113-45-2]. The activities of the 2 series of compounds were analyzed quant. using the hydrophobic and steric parameters of substituents at the 6-position of the pyrazine ring and an indicator variable.

In addition to the literature in the link below, there is a lot of literature about this compound(5,6-Dichloropyrazine-2,3-dicarbonitrile)HPLC of Formula: 56413-95-7, illustrating the importance and wide applicability of this compound(56413-95-7).

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Chemistry Milestones Of 3685-23-2

In addition to the literature in the link below, there is a lot of literature about this compound(cis-4-Aminocyclohexane carboxylic acid)SDS of cas: 3685-23-2, illustrating the importance and wide applicability of this compound(3685-23-2).

SDS of cas: 3685-23-2. Aromatic heterocyclic compounds can also be classified according to the number of heteroatoms contained in the heterocycle: single heteroatom, two heteroatoms, three heteroatoms and four heteroatoms. Compound: cis-4-Aminocyclohexane carboxylic acid, is researched, Molecular C7H13NO2, CAS is 3685-23-2, about Identification and Biological Evaluation of a Series of 1H-Benzo[de]isoquinoline-1,3(2H)-diones as Hepatitis C Virus NS5B Polymerase Inhibitors. Author is Ontoria, Jesus M.; Rydberg, Edwin H.; Di Marco, Stefania; Tomei, Licia; Attenni, Barbara; Malancona, Savina; Martin Hernando, Jose I.; Gennari, Nadia; Koch, Uwe; Narjes, Frank; Rowley, Michael; Summa, Vincenzo; Carroll, Steve S.; Olsen, David B.; De Francesco, Raffaele; Altamura, Sergio; Migliaccio, Giovanni; Carfi, Andrea.

The hepatitis C virus (HCV) NS5B RNA-dependent RNA polymerase (RdRp) plays a central role in virus replication. NS5B has no functional equivalent in mammalian cells and, as a consequence, is an attractive target for inhibition. Herein, we present 1H-benzo[de]isoquinoline-1,3(2H)-diones as a new series of selective inhibitors of HCV NS5B polymerase. The HTS hit 1 shows submicromolar potency in two different HCV replicons (1b and 2b) and displays no activity on other polymerases (HIV-RT, Polio-pol, GBV-b-pol). These inhibitors act during the pre-elongation phase by binding to NS5B non-nucleoside binding site Thumb Site II as demonstrated by crystal structure of compound 1 with the ΔC55-1b and ΔC21-2b enzymes and by mutagenesis studies. SAR in this new series reveals inhibitors, such as 20, with low micromolar activity in the HCV replicon and with good activity/toxicity window in cells.

In addition to the literature in the link below, there is a lot of literature about this compound(cis-4-Aminocyclohexane carboxylic acid)SDS of cas: 3685-23-2, illustrating the importance and wide applicability of this compound(3685-23-2).

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Something interesting about 56413-95-7

In addition to the literature in the link below, there is a lot of literature about this compound(5,6-Dichloropyrazine-2,3-dicarbonitrile)HPLC of Formula: 56413-95-7, illustrating the importance and wide applicability of this compound(56413-95-7).

HPLC of Formula: 56413-95-7. The mechanism of aromatic electrophilic substitution of aromatic heterocycles is consistent with that of benzene. Compound: 5,6-Dichloropyrazine-2,3-dicarbonitrile, is researched, Molecular C6Cl2N4, CAS is 56413-95-7, about Synthesis and spectral properties of tetrapyrazinoporphyrazinato metal complexes derived from a sterically hindered phenol. Author is Ibrahim, Fadi; Makhseed, Saad.

The synthesis of metal-containing tetrapyrazinoporphyrazines (azaphthalocyanines) bearing eight bulky substituents at the peripheral positions is described. The key precursor was prepared using a nucleophilic aromatic substitution reaction between a sterically hindered phenol and 5,6-dichloropyrazine-2,3-dicarbonitrile. Thus, azaphthalocyanine (AzaPc) derived from 2,6-isopropyl-4-nitrophenol possesses substituents that are forced by steric constraints to adopt a non-planar conformation which drastically enhances the solubility of the macrocycles and inhibits efficient cofacial interaction of the macrocycles even in the solid state as evaluated by UV-visible and 1H NMR spectroscopic techniques. The intense absorption in the red visible region and photostability of these highly soluble and non-aggregated complexes enhance the dynamic activity and make these complexes potentially suitable for PDT.

In addition to the literature in the link below, there is a lot of literature about this compound(5,6-Dichloropyrazine-2,3-dicarbonitrile)HPLC of Formula: 56413-95-7, illustrating the importance and wide applicability of this compound(56413-95-7).

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

The origin of a common compound about 56413-95-7

In addition to the literature in the link below, there is a lot of literature about this compound(5,6-Dichloropyrazine-2,3-dicarbonitrile)Safety of 5,6-Dichloropyrazine-2,3-dicarbonitrile, illustrating the importance and wide applicability of this compound(56413-95-7).

Safety of 5,6-Dichloropyrazine-2,3-dicarbonitrile. Aromatic heterocyclic compounds can also be classified according to the number of heteroatoms contained in the heterocycle: single heteroatom, two heteroatoms, three heteroatoms and four heteroatoms. Compound: 5,6-Dichloropyrazine-2,3-dicarbonitrile, is researched, Molecular C6Cl2N4, CAS is 56413-95-7, about Syntheses and characterization of push-pull tetrapyrazino[2,3-b]indoloporphyrazines. Author is Jaung, Jae-Yun; Matsuoka, Masaru; Fukunishi, Koushi.

The synthesis of tetrakis(indolopyrazino)porphyrazines by ring-closure reactions of 2,3-dichloro-5,6-dicyanopyrazine with enamines is described. Alkylated tetrakis(indolopyrazino)porphyrazines have push-pull intramol. charge-transfer chromophoric systems and show good solubility in most organic solvents. Large spectral changes caused by mol. aggregation of these dyes affected by solvent polarity and temperature were studied.

In addition to the literature in the link below, there is a lot of literature about this compound(5,6-Dichloropyrazine-2,3-dicarbonitrile)Safety of 5,6-Dichloropyrazine-2,3-dicarbonitrile, illustrating the importance and wide applicability of this compound(56413-95-7).

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Awesome Chemistry Experiments For 616-43-3

In addition to the literature in the link below, there is a lot of literature about this compound(3-Methyl-1H-pyrrole)HPLC of Formula: 616-43-3, illustrating the importance and wide applicability of this compound(616-43-3).

The chemical properties of alicyclic heterocycles are similar to those of the corresponding chain compounds. Compound: 3-Methyl-1H-pyrrole, is researched, Molecular C5H7N, CAS is 616-43-3, about Acid-catalyzed proton exchange on pyrrole and alkylpyrroles, the main research direction is kinetics proton exchange pyrrole.HPLC of Formula: 616-43-3.

The rates of D-H exchange in D2O-dioxane solution of pyrrole at the α- and β-positions were equal in F3CCO2D and D3O+; in DOAC the α-position was selectively protonated. Alkyl substituents activated adjacent position(s) toward H-D exchange, the influence of N-alkyl being less than that of 2-, 3-, 4-, and 5-alkyl.

In addition to the literature in the link below, there is a lot of literature about this compound(3-Methyl-1H-pyrrole)HPLC of Formula: 616-43-3, illustrating the importance and wide applicability of this compound(616-43-3).

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

You Should Know Something about 616-43-3

In addition to the literature in the link below, there is a lot of literature about this compound(3-Methyl-1H-pyrrole)Application of 616-43-3, illustrating the importance and wide applicability of this compound(616-43-3).

Epoxy compounds usually have stronger nucleophilic ability, because the alkyl group on the oxygen atom makes the bond angle smaller, which makes the lone pair of electrons react more dissimilarly with the electron-deficient system. Compound: 3-Methyl-1H-pyrrole, is researched, Molecular C5H7N, CAS is 616-43-3, about The transferability of the dynamic correlation energy in conjugated molecules.Application of 616-43-3.

The dynamic correlation energy of the ground state of organic conjugated mols., calculated using the Colle-Salvetti functional, has been decomposed into fragment contributions obtained by integrating the functional inside sep. fragment volumes defined as proposed by Bader. It is shown that these contributions, properly renormalized, can be utilized for predicting in a satisfactory way the total correlation energy of oligomers obtained by condensation of pyrrole and methane mols.

In addition to the literature in the link below, there is a lot of literature about this compound(3-Methyl-1H-pyrrole)Application of 616-43-3, illustrating the importance and wide applicability of this compound(616-43-3).

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Chemical Research in 56413-95-7

In addition to the literature in the link below, there is a lot of literature about this compound(5,6-Dichloropyrazine-2,3-dicarbonitrile)Formula: C6Cl2N4, illustrating the importance and wide applicability of this compound(56413-95-7).

Tomura, Masaaki; Tanaka, Shoji; Yamashita, Yoshiro published an article about the compound: 5,6-Dichloropyrazine-2,3-dicarbonitrile( cas:56413-95-7,SMILESS:N#CC1=NC(Cl)=C(Cl)N=C1C#N ).Formula: C6Cl2N4. Aromatic heterocyclic compounds can be classified according to the number of heteroatoms or the size of the ring. The authors also want to convey more information about this compound (cas:56413-95-7) through the article.

Novel dithiolato-metal complexes from 2,3-dicyano-5,6-dimercaptopyrazine (H2dcdmp) ligands were synthesized, and their TTF salts, (TTF)5[M(dcdmp)2]2 (M = Ni or Pd), were obtained by the diffusion method in MeCN. The elec. conductivities of these complexes at room temperature are 10-2-10-3 S cm-1. The x-ray structural anal. of (TTF)5[Pd(dcdmp)2]2 indicates that 2 Pd(dcdmp)2 mols. and 1 TTF mol. form 2:1 mixed stacks along the c axis, and other TTF mols. stack along the b axis. A number of intermol. S···N and S···S heteroatom contacts within the sum of van der Waals radii are observed in the crystal.

In addition to the literature in the link below, there is a lot of literature about this compound(5,6-Dichloropyrazine-2,3-dicarbonitrile)Formula: C6Cl2N4, illustrating the importance and wide applicability of this compound(56413-95-7).

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

New learning discoveries about 56413-95-7

There are many compounds similar to this compound(56413-95-7)Synthetic Route of C6Cl2N4. if you want to know more, you can check out my other articles. I hope it will help you,maybe you’ll find some useful information.

The chemical properties of alicyclic heterocycles are similar to those of the corresponding chain compounds. Compound: 5,6-Dichloropyrazine-2,3-dicarbonitrile, is researched, Molecular C6Cl2N4, CAS is 56413-95-7, about Synthesis and characterization of copper complexes with the 2,3-dicyano-5,6-dimercaptopyrazine ligand: Magnetic properties of a ferrocenium salt, the main research direction is copper mercaptopyrazine cyano complex preparation structure; crystal structure copper mercaptopyrazine cyano complex; antiferromagnetic interaction copper mercaptopyrazine cyano complex.Synthetic Route of C6Cl2N4.

(Bu4N)2[Cu(dcdmp)2], Bu4N[Cu(dcdmp)2] and [FeCp*2]2[Cu(dcdmp)2] (H2dcdmp = 2,3-dicyano-5,6-dimercaptopyrazine; Cp* = decamethylferrocenium) were obtained and characterized. (Bu4N)2Cu(Hdcdmp)2 crystallizes in the triclinic system, space group P1̅, Z = 1, with a 9.9512(6), b 10.541(1), c 13.221(1) Å, α 69.756(9), β 88.112(6) and γ 79.658(7)°. Its crystal structure consists of layers of well isolated square planar Cu(dcdmp)22- anions alternating with layers of Bu4N+ cations along b + c, and the magnetic properties in the range 2-300 K are close to those of an ideal paramagnet with an effective magnetic moment of 1.7 μB/f.u. Bu4N[Cu(dcdmp)2] crystallizes in the monoclinic space group C2/c, Z = 8, with a 35.281(4), b 9.501(1), c 21.885(2) Å and β 109.842(9)°, being isostructural with the Au analog previously described. [Fe(Cp*)2]2[Cu(dcdmp)2] crystallizes in the monoclinic system, space group C2/c, Z = 4, with a 15.891(1), b 10.5133(7), c 30.264(3) Å and β 91.105(2)°. Its crystal structure consists of out-of-registry columns, parallel to b, of alternated dianions and side-by-side pairs of cations, …A2-(D+D+)A2-(D+D+). This compound behaves as a paramagnet with weak antiferromagnetic interactions and no ordering down to 1.7 K. The magnetic properties, due to both cation and anion S = 1/2 contributions, show a large anisotropy, ascribed essentially to the g-factor anisotropy of the Fe(Cp*)2cations.

There are many compounds similar to this compound(56413-95-7)Synthetic Route of C6Cl2N4. if you want to know more, you can check out my other articles. I hope it will help you,maybe you’ll find some useful information.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Awesome Chemistry Experiments For 616-43-3

There are many compounds similar to this compound(616-43-3)Safety of 3-Methyl-1H-pyrrole. if you want to know more, you can check out my other articles. I hope it will help you,maybe you’ll find some useful information.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Identification of two chromogens in the Elson-Morgan determination of hexosamines. A new synthesis of 3-methylpyrrole. Structure of the “”pyrrolenephthalides””》. Authors are Cornforth, J. W.; Firth, M. E..The article about the compound:3-Methyl-1H-pyrrolecas:616-43-3,SMILESS:CC1=CNC=C1).Safety of 3-Methyl-1H-pyrrole. Through the article, more information about this compound (cas:616-43-3) is conveyed.

The substance producing most of the color with Ehrlich’s reagent in the Elson-Morgan assay of hexosamines is shown to be 2-methylpyrrole (I); 3-acetyl-2-methylpyrrole (II) is also formed. A synthesis of 3-methylpyrrole (III) in 4 steps from CH2:CMeCH2Cl (IV) is described. Infrared spectra indicate that the condensation products of pyrroles with ο-C6H4(CO)2O (V) are benzo[f]pyrrocoline-5,10-diones; several of these are described. D-Glucosamine-HCl (VI) (21.6 g.) in 800 cc. H2O was added to an aqueous solution (2200 ml.) containing 106 g. Na2CO3, 19.6 g. Ac2CH2, and 200 ml. N HCl, the mixture at pH 9.75 in 2 portions heated on steam baths under reflux condensers, heating continued 20 min., the solutions cooled below 30°, combined, distilled at 20 mm., and the receiver cooled, until the distillate gave no color with Ehrlich’s reagent. The distillate (450 ml.) saturated with NaCl, extracted with Et2O, shaken once with 2N NaOH and H2O, the combined aqueous and alk. solutions reëxtd. with Et2O, the extracts evaporated at -10°/30-40 mm., the residue distilled at room temperature and 1 mm. gave 650 mg. I, b766 138-46°. I remained colorless in N at -5° but darkened in air. The infrared spectrum was identical with that of authentic I. The residual liquors after collection of the aqueous distillate combined, heated 45 min., then distilled, the pyrrole precipitated as the Hg complex, the solid suspended in N Na2CO3, and decomposed with H2S gave 40 mg. I. The aqueous reaction mixture from I extracted continuously 24 hrs. with Et2O, and the product distilled at 0.6-0.7 mm. gave a product which sublimed above 100°/0.05 mm., the sublimate suspended in 1:1 Et2O-ligroine, and the solid collected gave 130 mg. II, m. 94-5° (ligroine), ν 1620 cm.-1 in KCl, and 1660 cm.-1 in CCl4. Aminoacetal (3 g.) with 1 ml. H2O added dropwise in the cold to 18 g. HCl, after 5 hrs. at room temperature the solution neutralized to methyl orange, 1.39 g. Ac2CH2 added at once, the pH adjusted to 10, after 24 hrs. at 5° the mixture saturated with salt and extracted with Et2O, the Et2O concentrated, and the residue sublimed below 100°/0.5 mm. and crystallized gave II. II would not form a semicarbazone or 2,4-dinitrophenylhydrazone. Pyrrole-2-aldehyde (5 g.) refluxed 15 min. with 10 g. KOH, 7.5 ml. 90% N2H4.H2O, and 100 ml. O(CH2CH2OH)2, the mixture heated so that I slowly distilled (with some H2O, N2H4, and glycol) (after 4-5 hrs. the condensate was weakly Ehrlich pos.), a little H2O added to the distillate, the lower layer saturated with NaCl, and extracted with Et2O gave 3.65 g. I. 2-Acetylpyrrole (1.5 g.) similarly gave 0.81 g. 2-ethylpyrrole, b20 65°. VI (250 μg.) in 5 ml. H2O heated 25 min. in a stoppered flask immersed in a bath at 95-100° with 5 ml. of a solution of 1 ml. Ac2CH2 in 50 ml. 0.5N Na2CO3, two 1-ml. samples (O1,O2) were withdrawn, the remainder concentrated at 20 mm., the thawed distillate diluted with 8 ml. H2O and a 1-ml. portion (D) taken. The residue also diluted to 8 ml. with H2O and two 1-ml. samples (R1,R2) drawn. A solution (P) of 2.45 μg. I in H2O was prepared by suitable dilutions Samples O1, D, R1, and P were treated with 5 ml. alc., followed after mixing by 0.5 ml. Ehrlich reagent. Samples O2 and R2 received 0.5 ml. of 1:1 alc.-acid. The solutions were kept 1-2 hrs. at room temperature Solutions O2 and R2 showed no significant difference from B when examined at 530 and 540 mμ. Solutions O1, D, R1 and P were measured with O2 as control. The following results were obtained (λ in mμ, optical density of O1, D, R1, and P given): 500, 0.089, 0.051, 0.038, 0.144; 510, 0.120, 0.070, 0.050, 0.203; 520, 0.154, 0.098, 0.060, 0.269; 530, 0.179, 0.121, 0.056, 0.323; 535, 0.183, 0.132, 0.050, -; 540, 0.186, 0.139, 0.040, 0.375; 544, -, 0.141, -, 0.386; 545, 0.185, 0.141, 0.030, 0.386; 550, 0.176, 0.138, 0.025, 0.377; 560, 0.125, 0.100, 0.020, 0.287. Two solutions of II (200 μg. and 10 μg.) in H2O were treated with alc. and Ehrlich reagent. After 1 hr. the stronger solution was pale pink and after 1 week it had become deep purple and the weaker one was pale pink. HC(OEt)3 (90 ml.) and 35 g. Mg heated at 60°, 2 ml. IV added, followed by a little MeI, cooling being required to keep the temperature below 70°, 49.5 ml. more IV added at such a rate as to maintain a temperature of 60°, next day the flask cooled, saturated NH4Cl added dropwise until the mixture became solid, the cake collected, and the filtrate evaporated gave 45 g. 3-methyl-3-butenal diethyl acetal (VII), b18-19 58-60°, b745 162°, n21D 1.4155. VII (13.2 g.) in 20 ml. Et2O treated gradually with 85 ml. ethereal M perphthalic acid, allowed to warm, and kept below 30° by occasional cooling, the next day the phthalic acid removed, and the filtrate extracted with aqueous NaHCO3 gave 10.9 g. 3,4-epoxy-3-methylbutanal diethyl acetal (VIII), b17 83-4°. VIII (3 g.) and 20 ml. MeOHNH3 kept 24 hrs. at 37° and distilled gave 1.95 g. 4-amino-3-hydroxy-3-methylbutanal diethyl acetal (IX), b17 130°, purple color with Ehrlich reagent. Aqueous NH3, either at 100° for 3.5 hrs., or at room temperature 48 hrs. also opened the epoxide ring; the best yield of IX was 65%. IX (1.5 g.) distilled with a solution of 4.5 g. citric acid in 400 ml. H2O until the Ehrlich test became weak and III was isolated from the distillate as for I, giving 200 mg. III, b. 142-3°, darkened rapidly in the air. III (38%) was obtained by dissolving IX in H2O and 3 g. citric acid and distilling the whole in stream until 400 ml. distillate had collected; a Hg complex of III was formed when IV was kept 2 days at 40° with 450 mg. NH4OAc, 2.5 ml. 0.5N AcOH, and 900 mg. HgCl2 with occasional shaking. The following general procedure for preparing benzopyrrocolinediones was developed. The pyrrole (x g.) and 10x g. V mixed with 15x g. AcOH in a tube and when sealed heated 2 hrs. at 180-90°, the product refluxed with H2O, the black residue extracted with hot alc., the alc. filtrate taken to dryness, the residue treated with C6H6, filtered, and the filtrate after concentration chromatographed on Al2O3 gave the crystalline benzopyrrocolinedione. I (600 mg.) gave 98 mg. 3-methylbenzo[f]pyrrocoline-5,10-dione, needles, m. 173-4° (ligroine), ν 1708 and 1655 cm.-1. A mixture of 1- and 2-methylbenzo[f]pyrrocoline-5,10-diones (57 mg.) was obtained from 200 mg. III. Recrystallization from alc. gave 18 mg. of one isomer, m. 223°. The mother liquors and washings from the 1st recrystallization evaporated and the residue crystallized gave 13 mg. of the other isomer, m. 169-70°. Both isomerides showed ν 1708 and 1655 cm.-1 in KCl. 2-Ethylpyrrole (364 mg.) gave 43 mg. 1-ethylbenzo[f]pyrrocoline-5,10-dione, m. 114°, after sublimation in vacuo and crystallization from MeOH. Condensation of 2,4-dimethylpyrrylmagnesium bromide [from 6.4 g. 2,4-dimethylpyrrole (IXa)] and 5 g. V in Et2O gave a solid by filtration after decomposition of the mixture with ice and CO2; the aqueous filtrate extracted with Et2O and acidified and the precipitates combined and crystallized gave 7.2 g. 2-(ο-carboxybenzoyl)-3,5-dimethylpyrrole (X), m. 195-6.5° (decomposition) (MeOH-H2O). X on warming with Ehrlich reagent developed a cherry red color. X (100 mg.) refluxed 1.5 hrs. with 2 ml. H2O and 5 drops NH4OH gave 27.5 mg. 1,3-dimethylbenzo[f]pyrrocoline-5,10-dione (XI), m. 181-3° (alc.), ν 1705, 1650 cm.-1 KCl, λ 378, 318, 267, 237 mμ, log ε 3.67, 3.71, 4.28, and 4.42, resp. XI was also obtained on heating IXa and V by the standard procedure. XI (52.5 mg.) heated 1 hr. with 2 ml. 2N NaOH gave X.

There are many compounds similar to this compound(616-43-3)Safety of 3-Methyl-1H-pyrrole. if you want to know more, you can check out my other articles. I hope it will help you,maybe you’ll find some useful information.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate