Machine Learning in Chemistry about 56413-95-7

In some applications, this compound(56413-95-7)Electric Literature of C6Cl2N4 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Nakamura, Akira; Ikeda, Osamu; Segawa, Hirozo; Takeuchi, Yasutomo; Takematsu, Tetsuo published an article about the compound: 5,6-Dichloropyrazine-2,3-dicarbonitrile( cas:56413-95-7,SMILESS:N#CC1=NC(Cl)=C(Cl)N=C1C#N ).Electric Literature of C6Cl2N4. Aromatic heterocyclic compounds can be classified according to the number of heteroatoms or the size of the ring. The authors also want to convey more information about this compound (cas:56413-95-7) through the article.

The herbicidal activities of 6-substituted 2,3-dicyano-5-chloropyrazines were evaluated and correlated with the previously reported substituent parameters π (hydrophobicity) and σp (Hansch, A., et al., 1973). Parameters π and π2 indicate that the hydrophobicity of the mol. is involved in the translocation of these compounds to the target site. The activity decreases with increasing electron-withdrawing property of the 6-substituent. The herbicidal activity varied parabolically with the change in π.

In some applications, this compound(56413-95-7)Electric Literature of C6Cl2N4 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

A new synthetic route of 616-43-3

In some applications, this compound(616-43-3)Quality Control of 3-Methyl-1H-pyrrole is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Most of the compounds have physiologically active properties, and their biological properties are often attributed to the heteroatoms contained in their molecules, and most of these heteroatoms also appear in cyclic structures. A Journal, Canadian Journal of Chemistry called Pyrrole chemistry. XIII. New syntheses of 3-alkylpyrroles, Author is Groves, J. K.; Anderson, Hugh J.; Nagy, H., which mentions a compound: 616-43-3, SMILESS is CC1=CNC=C1, Molecular C5H7N, Quality Control of 3-Methyl-1H-pyrrole.

3-n-Alkylpyrroles are prepared in good yield by a combined Wolff-Kishner reduction and hydrolysis and decarboxylation of 4-acyl-2-pyrrole-thiolcarboxylates. Me 4-isopropyl-2-pyrrolecarboxylate and 4-tert-butyl-2-pyrrolecarbonitrile are prepared by alkylation of Me 2-pyrrolecarboxylate and 2-pyrrolecarbonitrile, resp. Hydrolysis and decarboxylation of these disubstituted compounds afford the corresponding-3-alkylpyrroles. Mass spectral data for some 1-, 2-, and 3-alkylpyrroles are reported.

In some applications, this compound(616-43-3)Quality Control of 3-Methyl-1H-pyrrole is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Analyzing the synthesis route of 3685-23-2

In some applications, this compound(3685-23-2)Recommanded Product: 3685-23-2 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Most of the natural products isolated at present are heterocyclic compounds, so heterocyclic compounds occupy an important position in the research of organic chemistry. A compound: 3685-23-2, is researched, SMILESS is N[C@H]1CC[C@H](CC1)C(O)=O, Molecular C7H13NO2Journal, Journal of Organic Chemistry called Reductive cyclization of aminobenzoic acids, Author is Augustine, Robert L.; Vag, Linda A., the main research direction is aminobenzoic acid hydrogenation; cyclization reductive aminobenzoic acid; azabicyclooctanone; bicyclic lactam; bicyclic lactam.Recommanded Product: 3685-23-2.

Hydrogenation of m- and p-H2NC6H4CO2H over a Ru catalyst at 150°/1600 psig gave the bicyclic lactams I and II, resp. Cyclization also occurred on hydrogenation of 3,4-Me(H2N)C6H3CO2H. Hydrogenation of 3,4-(H2N)2C6H3CO2H resulted in loss of one of the NH2 groups; the 4-NH2 group was lost twice as readily as the 3-NH2 group. With 3,4-(HO)(H2N)C6H3CO2H, complete hydrogenolysis of the NH2 group occured.

In some applications, this compound(3685-23-2)Recommanded Product: 3685-23-2 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Chemical Research in 616-43-3

In some applications, this compound(616-43-3)Formula: C5H7N is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Pyrolysis studies. Controlled thermal degradation of mesoporphyrin》. Authors are Whitten, David G.; Bentley, Kenton E.; Kuwada, Daniel.The article about the compound:3-Methyl-1H-pyrrolecas:616-43-3,SMILESS:CC1=CNC=C1).Formula: C5H7N. Through the article, more information about this compound (cas:616-43-3) is conveyed.

The major organic products obtained from thermal decomposition of mesoporphyrin (I) at several temperatures over the range 400-780° were pyrrole, 3-methylpyrrole, dimethylpyrroles, trimethylpyrroles, opsopyrrole (II), cryptopyrrole (III), tetramethylpyrrole, hemopyrrole (IV), and phyllopyrrole (V). Small amounts of MeCN and EtCN were obtained together with moderate yields of CH4, C2H6, and C2H4. The yields of hydrocarbons and nitriles increased with the temperature Thermal decomposition products of I at lower temperatures (400-600°) were the same as those favored in reductive degradation. The pyrroles II-V, formed by cleavage at the methene bridge positions only amounted to 92% of alkylpyrroles formed at 410°. The yield of less characteristic pyrroles increased with elevation of the pyrolysis temperature Spectral examination of the residue failed to show any dipyrrylmethanes or rearranged porphyrins that might be possible intermediates in pyrrole formation. Increase of pyrolysis hot zone by use of a gold baffle caused a less characteristic pyrolysis above 550°. Above 560°, 2,4-dimethyl-3-ethylpyrrole (VI) gave considerable amounts of dimethylpyrrole and methylpyrrole. The products of sealed tube pyrolysis of I in vacuo and in H atm. (450-500 mm. at 20°) heated 1 hr. at 400° were the same as those produced by pyrolysis in dynamic systems at the same temperature Mass spectral determinations of VI and the isomer 2,3,4,5-tetramethyl-pyrrole show that the method served to distinguish between such pairs but not between isomers having the same types of alkyl substituents. The spectra of mesoporphyrin IX and ferric mesoporphyrin IX chloride di-Me ester as obtained using a direct introduction system were similar to previously reported spectra of Ni and Cu etioporphyrins. Relatively high stability of porphyrin pos. and double pos. ions gives rise to little fragmentation of the porphyrin nucleus. The high-resolution mass spectrum of I gives mol. weight and mol. formula, with a fragmentation pattern indicating high stability. Controlled pyrolysis selectivity degrades the porphyrin into pyrrole sub-units, which can be readily identified and used in determining the structure of the parent porphyrin.

In some applications, this compound(616-43-3)Formula: C5H7N is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

The origin of a common compound about 56413-95-7

In some applications, this compound(56413-95-7)Safety of 5,6-Dichloropyrazine-2,3-dicarbonitrile is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Safety of 5,6-Dichloropyrazine-2,3-dicarbonitrile. Aromatic heterocyclic compounds can also be classified according to the number of heteroatoms contained in the heterocycle: single heteroatom, two heteroatoms, three heteroatoms and four heteroatoms. Compound: 5,6-Dichloropyrazine-2,3-dicarbonitrile, is researched, Molecular C6Cl2N4, CAS is 56413-95-7, about The synthesis, photochemical and photophysical properties of zinc aryloxy- and alkyloxyazaphthalocyanines. Author is Novakova, Veronika; Zimcik, Petr; Miletin, Miroslav; Vujtech, Petr; Franzova, Sarka.

Octasubstituted zinc tetrapyrazinoporphyrazines bearing butoxy, octyloxy, 2,6-diisopropylphenoxy and 4-(hydroxymethyl)phenoxy substituents were synthesized from the corresponding 5,6-disubstituted pyrazine-2,3-dicarbonitriles using Zn(quinoline)2Cl2 in yields varying from 14 to 44%. The reaction procedure proved to be efficient for the synthesis of both alkyloxy- and aryloxy- substituted zinc tetrapyrazinoporphyrazines and did not require strictly anhydrous conditions. Optimal cyclotetramerization conditions were identified for each derivative, in terms of reaction temperature, as overheating cleaved the ether bond leaving a vacant OH group on the macrocycle. The photochem. and photophys. properties of the synthesized compounds were investigated in pyridine. Singlet oxygen quantum yields (Φ Δ) ranged from 0.49 to 0.61 and high fluorescence quantum yields (Φ F) of ∼0.30 were observed for non-aggregated compounds

In some applications, this compound(56413-95-7)Safety of 5,6-Dichloropyrazine-2,3-dicarbonitrile is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Extended knowledge of 56413-95-7

In some applications, this compound(56413-95-7)Recommanded Product: 5,6-Dichloropyrazine-2,3-dicarbonitrile is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Epoxy compounds usually have stronger nucleophilic ability, because the alkyl group on the oxygen atom makes the bond angle smaller, which makes the lone pair of electrons react more dissimilarly with the electron-deficient system. Compound: 5,6-Dichloropyrazine-2,3-dicarbonitrile, is researched, Molecular C6Cl2N4, CAS is 56413-95-7, about Stable and Easily Accessible Functional Dyes: Dihydrotetraazaanthracenes as Versatile Precursors for Higher Acenes.Recommanded Product: 5,6-Dichloropyrazine-2,3-dicarbonitrile.

A series of new dihydrotetraazaanthracenes and one new dihydrotetraazatetracene as substances for applications in organoelectronic devices and as suitable building blocks for higher azaacenes was synthesized. The condensation of aromatic diamines with dichlorodicyanopyrazine led to these tricyclic/tetracyclic compounds Syntheses of N-substituted phenylenediamines were developed to enable the introduction of multiple functional groups such as ester, amino, or nitro groups on the chromophoric system. Relationships between the structure and the spectroscopic properties could be derived from UV/Vis absorption and fluorescence spectroscopy, and by DFT and TD-DFT calculations of mol. and aggregate structures. The absorption spectra are dominated by π-π* transitions of the single mols., whereas aggregation needs to be taken into account to obtain reasonable agreement between theory and experiment in certain cases. Single-crystal x-ray analyses were carried out to examine the morphol. and solid packing effects. Finally, a dihydrotetraazaanthracene was used as a building-block to create a mesoionic octaazapentacene.

In some applications, this compound(56413-95-7)Recommanded Product: 5,6-Dichloropyrazine-2,3-dicarbonitrile is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Awesome and Easy Science Experiments about 3685-23-2

In some applications, this compound(3685-23-2)HPLC of Formula: 3685-23-2 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

HPLC of Formula: 3685-23-2. The mechanism of aromatic electrophilic substitution of aromatic heterocycles is consistent with that of benzene. Compound: cis-4-Aminocyclohexane carboxylic acid, is researched, Molecular C7H13NO2, CAS is 3685-23-2, about Preparation and properties of ruthenium catalysts of the liquid-phase hydrogenation of aromatic compounds. Author is Litvin, E. F.; Freidlin, L. Kh.; Gurskii, R. N.; Istratova, R. V.; Presnov, A. P..

The activity and sp. surface of 5% Ru catalysts increased in the order of supports SiO2 < γ-Al2O3 < C, but the specific activity per m2 surface was independent of the support or the method of catalyst preparation A catalyst prepared by treating C with Ru(OH)Cl3 at pH 5.9-6.1 followed by reduction with H at 300° or NaBH4 at 20° had the highest dispersion and specific activity by weight of those studied in the hydrogenation of p-H2NC6H4CO2- NH4+ (p-I). Hexahydroarom. acids were formed in 86-98% yield from m- and p-I, p-H2NCH2C6H4CO2- NH4+, p-Me3CC6H4CO2Na, ammonium isonicotinate and BzOH, and acenaphthene gave >90% perhydroacenaphthene at 80-145° and 60-80 atm.

In some applications, this compound(3685-23-2)HPLC of Formula: 3685-23-2 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

What kind of challenge would you like to see in a future of compound: 56413-95-7

In some applications, this compound(56413-95-7)Recommanded Product: 56413-95-7 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

In organic chemistry, atoms other than carbon and hydrogen are generally referred to as heteroatoms. The most common heteroatoms are nitrogen, oxygen and sulfur. Now I present to you an article called Syntheses and spectral properties of new dicyanopyrazine-related heterocycles from diaminomaleonitrile, published in 1998, which mentions a compound: 56413-95-7, mainly applied to dicyanopyrazine precursor fluorescent dye synthesis; quinoxaline dye preparation dicyanopyrazine precursor; furopyrazine dye preparation dicyanopyrazine precursor; pyrrolopyrazine dye preparation dicyanopyrazine precursor; pyrazinoporphyrazine dye preparation dicyanopyrazine precursor, Recommanded Product: 56413-95-7.

New dicyanopyrazine-related heterocycles such as quinoxalines, furopyrazines, pyrrolopyrazines, and pyrazinoporphyrazines were synthesized and their absorption and fluorescence spectra were correlated with their structures.

In some applications, this compound(56413-95-7)Recommanded Product: 56413-95-7 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

The effect of reaction temperature change on equilibrium 56413-95-7

In some applications, this compound(56413-95-7)Reference of 5,6-Dichloropyrazine-2,3-dicarbonitrile is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic.Novakova, Veronika; Laskova, Miroslava; Vavrickova, Hana; Zimcik, Petr researched the compound: 5,6-Dichloropyrazine-2,3-dicarbonitrile( cas:56413-95-7 ).Reference of 5,6-Dichloropyrazine-2,3-dicarbonitrile.They published the article 《Phenol-Substituted Tetrapyrazinoporphyrazines: pH-Dependent Fluorescence in Basic Media》 about this compound( cas:56413-95-7 ) in Chemistry – A European Journal. Keywords: zinc phenol substituted tetrapyrazinoporphyrazine preparation pH dependent fluorescence; phenol deprotonation switching off red fluorescence tetrapyrazinoporphyrazine solution microemulsion; azaphthalocyanines; fluorescence; intramolecular charge transfer; pH sensors; phthalocyanines. We’ll tell you more about this compound (cas:56413-95-7).

Tetrapyrazinoporphyrazines (TPyzPzs) bearing one, two, four or eight 3,5-di(tert-butyl)-4-hydroxyphenol moieties were synthesized as Zn(II) complexes and metal-free derivatives The deprotonation of the phenol using Bu4NOH induced the formation of a strong donor for intramol. charge transfer that switched OFF the red fluorescence (λF∼660 nm) of the parent Zn TPyzPzs. The changes were fully reversible for TPyzPzs with one to four phenolic moieties, and an irreversible modification was observed for TPyzPzs substituted with eight phenols. The sensors were anchored to lipophilic particles in H2O, and a pKa ∼12.5-12.7 was determined for the phenolic hydroxyl based on fluorescence changes in different buffers. A novel concept for fluorescence OFF-ON-OFF switching in metal-free TPyzPzs bearing phenolic moieties upon addition of specific amounts of base was demonstrated.

In some applications, this compound(56413-95-7)Reference of 5,6-Dichloropyrazine-2,3-dicarbonitrile is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Downstream Synthetic Route Of 56413-95-7

In some applications, this compound(56413-95-7)Application of 56413-95-7 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Application of 56413-95-7. The mechanism of aromatic electrophilic substitution of aromatic heterocycles is consistent with that of benzene. Compound: 5,6-Dichloropyrazine-2,3-dicarbonitrile, is researched, Molecular C6Cl2N4, CAS is 56413-95-7, about Azaphthalocyanines: Red Fluorescent Probes for Cations. Author is Novakova, Veronika; Lochman, Lukas; Zajicova, Ivana; Kopecky, Kamil; Miletin, Miroslav; Lang, Kamil; Kirakci, Kaplan; Zimcik, Petr.

Chelation of sodium and potassium cations by aza[15]crown-5 switches on strong red fluorescence in azaphthalocyanines. This is due to an inhibition of ultrafast intramol. charge transfer by coordination of the cations to the donor center. Sodium cations fit well into a cavity of the recognition moiety, while potassium forms supramol. assemblies of azaphthalocyanines with 1:2 stoichiometry.

In some applications, this compound(56413-95-7)Application of 56413-95-7 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate