Brief introduction of (S)-Propane-1,2-diol

Balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law.Application of 4254-15-3. In my other articles, you can also check out more blogs about 4254-15-3

Application of 4254-15-3, Chemistry is the science of change. But why do chemical reactions take place? Why do chemicals react with each other? The answer is in thermodynamics and kinetics.In a document type is Article, and a compound is mentioned, 4254-15-3, (S)-Propane-1,2-diol, introducing its new discovery.

In-Situ Monitoring of Enantiomeric Excess during a Catalytic Kinetic Resolution

Vibrational Circular Dichroism combined with FTIR spectroscopy (VCD-IR) is demonstrated as a viable tool for the in situ measurement of enantiomeric excess during asymmetric catalytic transformations. Employing the Jacobsen (salen)Co-catalyzed hydrolytic kinetic resolution of racemic epoxides as a proof-of-concept case study, methodology is developed to monitor the enantiomeric excess of the epoxide substrate as a function of conversion of the limiting reactant, water. Comparison of results for monomeric and oligomeric catalysts probes the molecularity of the catalyst by investigating nonlinear effects in catalyst enantiopurity. These results are in excellent agreement with previous mechanistic investigations of this reaction based on kinetic measurements and computational studies.

Balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law.Application of 4254-15-3. In my other articles, you can also check out more blogs about 4254-15-3

Reference£º
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate