Why Are Children Getting Addicted To (2S,3S)-Butane-2,3-diol

Balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law.Related Products of 19132-06-0. In my other articles, you can also check out more blogs about 19132-06-0

Related Products of 19132-06-0, New Advances in Chemical Research in 2021. The spectroscopic and theoretical assessments of solvent structures and their interactions with reaction intermediates and transition states. 19132-06-0, Name is (2S,3S)-Butane-2,3-diol, molecular formula is C4H10O2, belongs to chiral-oxygen-ligands compounds. In a Article,once mentioned of 19132-06-0

Asymmetric synthesis of (R,R)- and (S,S)-1,8,9,16- tetrahydroxytetraphenylenes was achieved from starting material (2R,3R)-butane-2,3-diol and (2S,3S)-butane-2,3-diol respectively by utilizing a center-to-axis strategy. A series of crown ether compounds 20, 24, and 25 and their corresponding enantiomers derived from chiral tetrahydroxytetraphenylene were synthesized in enantiomerically pure forms. Enantiomeric recognition properties of these hosts toward l- and d-amino acid methyl ester hydrochloride were studied by the UV spectroscopy titration. The tetramer hosts (S,S,S,S,S,S,S,S)-20 and (R,R,R,R,R,R,R,R)-20 exhibited the best enantioselectivities toward l- and d-alanine methyl ester hydrochloride salt with KL/KD = 4.1 and KD/KL = 3.9, respectively. The new chiral macrocyclic hosts would further enrich the host-guest chemistry.

Balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law.Related Products of 19132-06-0. In my other articles, you can also check out more blogs about 19132-06-0

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate