The influence of catalyst in reaction 616-43-3

In addition to the literature in the link below, there is a lot of literature about this compound(3-Methyl-1H-pyrrole)Name: 3-Methyl-1H-pyrrole, illustrating the importance and wide applicability of this compound(616-43-3).

In organic chemistry, atoms other than carbon and hydrogen are generally referred to as heteroatoms. The most common heteroatoms are nitrogen, oxygen and sulfur. Now I present to you an article called Controlling the electro-mechanical performance of polypyrrole through 3- and 3,4-methyl substituted copolymers, published in 2015, which mentions a compound: 616-43-3, mainly applied to polypyrrole methyl substituted pyrrole copolymer electrochem polymerization electromech performance, Name: 3-Methyl-1H-pyrrole.

Conducting polymers such as polypyrrole are biocompatible materials used in bioelectronic applications and microactuators for mechanobiol. and soft microrobotics. The materials are commonly electrochem. synthesized from an electrolyte solution comprising pyrrole monomers and a salt, which is incorporated as the counter ion. This electrosynthesis results in polypyrrole forming a three-dimensional network with extensive crosslinking in both the alpha and beta positions, which impacts the electro-mech. performance. In this study we adopt a ‘blocking strategy’ to restrict and control crosslinking and chain branching through beta substitution of the monomer to investigate the effect of crosslinking on the electroactive properties. Me groups where used as blocking groups to minimise the impact on the pyrrole ring system. Pyrrole, 3- and 3,4-Me substituted pyrrole monomers were electro-polymerised both as homo-polymers and as a series of co-polymer films. The electroactive performance of the films was characterised by measuring their electrochem. responses and their reversible and non-reversible film thickness changes. This showed that altering the degree of crosslinking through this blocking strategy had a large impact on the reversible and irreversible volume change. These results elaborate the importance of the polymer structure in the actuator performance, an aspect that has hitherto received little attention.

In addition to the literature in the link below, there is a lot of literature about this compound(3-Methyl-1H-pyrrole)Name: 3-Methyl-1H-pyrrole, illustrating the importance and wide applicability of this compound(616-43-3).

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate