In organic chemistry, atoms other than carbon and hydrogen are generally referred to as heteroatoms. The most common heteroatoms are nitrogen, oxygen and sulfur. Now I present to you an article called Aroma binding and stability in brewed coffee: A case study of 2-furfurylthiol, published in 2019-10-15, which mentions a compound: 616-43-3, mainly applied to furfurylthiol aroma binding brewed coffee storage; 2-Furfurylthiol (2-FFT); 2-Furfurylthiol (PubChem CID 7363); 3-Heptanone (PubChem CID: 7802); Binding site stability; Coffee brew aroma stability; Disodium hydrogen phosphate (PubChem CID: 24203); Hydrochloric acid (PubChem CID: 313); Hydroxyhydroquinone (PubChem CID 10787); Reversible and irreversible degradation; Sodium dihydrogen phosphate (PubChem CID: 23672064); Sodium hydroxide (PubChem CID: 14798); l-Cysteine (PubChem CID 5862), Quality Control of 3-Methyl-1H-pyrrole.
The aroma stability of fresh coffee brew was investigated during storage over 60 min, there was a substantial reduction in available 2-furfurylthiol (2-FFT) (84%), methanethiol (72%), 3-methyl-1H-pyrrole (68%) and an increase of 2-pentylfuran (65%). It is proposed that 2-FFT was reduced through reversible chem. binding and irreversible losses. Bound 2-FFT was released after cysteine addition, thereby demonstrating that a reversible binding reaction was the dominant mechanism of 2-FFT loss in natural coffee brew. The reduction in available 2-FFT was investigated at different pH and temperatures At high pH, the reversible binding of 2-FFT was shown to protect 2-FFT from irreversible losses, while irreversible losses led to the reduction of total 2-FFT at low pH. A model reaction system was developed and a potential conjugate, hydroxyhydroquinone, was reacted with 2-FFT. Hydroxyhydroquinone also showed 2-FFT was released after cysteine addition at high pH.
Compounds in my other articles are similar to this one(3-Methyl-1H-pyrrole)Quality Control of 3-Methyl-1H-pyrrole, you can compare them to see their pros and cons in some ways,such as convenient, effective and so on.
Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate