Awesome and Easy Science Experiments about (S)-Butane-1,3-diol

The prevalence of solvent effects in heterogeneous catalysis in condensed media has motivated developing quantitative kinetic, spectroscopic, and theoretical assessments of solvent structuresyou can also check out more blogs about24621-61-2 . Synthetic Route of 24621-61-2

Synthetic Route of 24621-61-2, New research progress on 24621-61-2 in 2021. Redox catalysis has been broadly utilized in electrochemical synthesis due to its kinetic advantages over direct electrolysis. 24621-61-2, Name is (S)-Butane-1,3-diol, molecular formula is C4H10O2. In a article,once mentioned of 24621-61-2

Twelve new analogues of 19-nor-1alpha,25-dihydroxyvitamin D3 (5-16) were prepared by convergent syntheses, employing the Wittig Horner reaction. The necessary Grundmann type ketones (45-48), possessing fixed configurations of the hydroxyl group at C-25, were obtained by a multistep procedure from commercial vitamin D2 and enantiomers of 1,3-butanediol (23 and 24). We have examined the influence of removal of one of the methyl groups located at C-25 on the biological in vitro and in vivo activity. The in vivo tests showed that the synthesized vitamin D compounds (5-16) exhibit reduced calcemic activity both in bone and in the intestine. However, in vitro potency of 2-methylene and 2alpha-methyl compounds (5-10, 13, and 14) remained similar or enhanced as compared to that of 1alpha,25-(OH)2D3.

The prevalence of solvent effects in heterogeneous catalysis in condensed media has motivated developing quantitative kinetic, spectroscopic, and theoretical assessments of solvent structuresyou can also check out more blogs about24621-61-2 . Synthetic Route of 24621-61-2

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate