Brief introduction of 4254-15-3

Sometimes chemists are able to propose two or more mechanisms that are consistent with the available data. name: (S)-Propane-1,2-diol, If a proposed mechanism predicts the wrong experimental rate law, however, the mechanism must be incorrect.Welcome to check out more blogs about 4254-15-3, in my other articles.

One of the major reasons for studying chemical kinetics is to use measurements of the macroscopic properties of a system, name: (S)-Propane-1,2-diol, such as the rate of change in the concentration of reactants or products with time.In a article, mentioned the application of 4254-15-3, Name is (S)-Propane-1,2-diol, molecular formula is C3H8O2

Stereoselective oxidation of aryl-substituted vicinal diols into chiral alpha-hydroxy aldehydes by re-engineered propanediol oxidoreductase

alpha-Hydroxy aldehydes are chiral building blocks used in synthesis of natural products and synthetic drugs. One route to their production is by regioselective oxidation of vicinal diols and, in this work, we aimed to perform the oxidation of 3-phenyl-1,2-propanediol into the corresponding alpha-hydroxy aldehyde applying enzyme catalysis. Propanediol oxidoreductase from Escherichia coli efficiently catalyzes the stereoselective oxidation of S-1,2-propanediol into S-lactaldehyde. The enzyme, however, shows no detectable activity with aryl-substituted or other bulky alcohols. We conducted ISM-driven directed evolution on FucO and were able to isolate several mutants that were active with S-3-phenyl-1,2-propanediol. The most efficient variant displayed a kcat/KM of 40 s-1 M-1 and the most enantioselective variant an E-value (S/R) of 80. Furthermore, other isolated variants showed up to 4400-fold increased activity with another bulky substrate, phenylacetaldehyde. The results with engineered propanediol oxidoreductases identified amino acids important for substrate selectivity and asymmetric synthesis of aryl-substituted alpha-hydroxy aldehydes. In conclusion, our study demonstrates the feasibility of tailoring the catalytic properties of propanediol oxidoreductase for biocatalytic properties.

Sometimes chemists are able to propose two or more mechanisms that are consistent with the available data. name: (S)-Propane-1,2-diol, If a proposed mechanism predicts the wrong experimental rate law, however, the mechanism must be incorrect.Welcome to check out more blogs about 4254-15-3, in my other articles.

Reference£º
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate