The effect of the change of (S)-Butane-1,3-diol synthetic route on the product

Thank you very much for taking the time to read this article. If you are also interested in other aspects of (S)-Butane-1,3-diol, CAS: 24621-61-2, you can also browse my other articles.

24621-61-2, An elementary termolecular reaction involves the simultaneous collision of three atoms, molecules, or ions.24621-61-2, name is (S)-Butane-1,3-diol. Here is a downstream synthesis route of the compound 24621-61-2

Example 1 Preparation of (3S)-1-p-Toluenesulfonyloxy-3-triethylsilyloxy-butane (2)To a stirred solution of the (S)-(+)-1,3-butanediol 1 (1 g, 11.1 mmol), DMAP (30 mg, 0.25 mmol) and Et3N (4.6 mL, 3.33 g, 33 mmol) in anhydrous methylene chloride (20 mL) p-toluenesulfonyl chloride (2.54 g, 13.3 mmol) was added at 0 C. The reaction mixture was stirred at 4 C. for 22 h. Methylene chloride was added and the mixture was washed with water, dried (Na2SO4) and concentrated under reduced pressure. A residue was chromatographed on silica gel with hexane/ethyl acetate (8:2, then 1:1) to afford the tosylate (2.31 g, 85% yield) as a colorless oil.To a stirred solution of the tosylate (2.31 g, 9.5 mmol) and 2,6-lutidine (1.2 mL, 1.12 g, 10.5 mmol) in anhydrous methylene chloride (15 mL) triethylsilyl trifluoromethanesulfonate (2.1 mL, 2.51 g, 9.5 mmol) was added at -50 C. The reaction mixture was allowed to warm to room temperature (4 h) and stirring was continued for additional 20 h. Methylene chloride was added and the mixture was washed with water, dried (Na2SO4) and concentrated under reduced pressure. A residue was chromatographed on silica gel with hexane/ethyl acetate (97:3) to afford the product 2 (2.71 g, 80% yield) as a colorless oil:[alpha]D+18.0 (c 2.38, CHCl3); 1H NMR (400 MHz, CDCl3) delta 7.77 (2H, d, J=8.2 Hz, o-HTs), 7.33 (2H, d, J=8.2 Hz, m-HTs), 4.10 (2H, t, J=6.1 Hz, 1-H2), 3.90 (1H, m, 3-H), 2.43 (3H, s, MeTs), 1.72 (2H, m, 2-H2), 1.10 (3H, d, J=6.2 Hz, 4-H3), 0.88 (9H, t, J=8.0 Hz, 3¡ÁSiCH2CH3), 0.50 (6H, q, J=8.0 Hz, 3¡ÁSiCH2CH3); 13C NMR (100 MHz) delta 144.62 (s, p-CTs), 133.03 (s, i-CTs), 129.72 (d, m-CTs), 127.82 (d, o-CTs), 67.78 (t, C-1), 64.46 (d, C-3), 38.47 (t, C-2), 23.82 (q, C-4), 21.52 (q, MeTs), 6.71 (q, SiCH2CH3), 4.77 (t, SiCH2CH3); MS (EI) m/z 359 (5, MH+), 329 (87, M+-C2H5), 259 (100), 233 (54), 197 (50), 179 (74), 163 (40), 149 (48), 135 (38), 115 (53), 91 (71); exact mass calculated for C15H25O4SSi (M+-C2H5) 329.1243, found 329.1239.

Thank you very much for taking the time to read this article. If you are also interested in other aspects of (S)-Butane-1,3-diol, CAS: 24621-61-2, you can also browse my other articles.

Reference£º
Patent; DeLuca, Hector F.; Clagett-Dame, Margaret; Plum, Lori A.; Chiellini, Grazia; Grzywacz, Pawel; US2009/170821; (2009); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

The effect of the change of 24621-61-2 synthetic route on the product

This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products.If you are interested, you can also browse other articles of 24621-61-2, We look forward to the emergence of more reaction modes in the future.

An elementary termolecular reaction involves the simultaneous collision of three atoms, molecules, or ions.24621-61-2, name is (S)-Butane-1,3-diol. Here is a downstream synthesis route of the compound 24621-61-2, 24621-61-2

p-Toluenesulfonyl chloride (381 mg, 1 .68 mmol) was dissolved in anhydrous DCM (10 mL) at RT under N2. (s)-(+)-1 ,3-butandiol (300 muIota_, 3.33 mmol) was added followed by NEt3 (450 muIota_, 3.33 mmol) and the solution stirred for 18 h. The solution was partitioned with H2O (15 mL) and extracted with DCM (3 x 10 mL), Combined organic fractions were dried by phase separator and the mixture loaded onto silica for purification by flash chromatography. The desired compound A32 was isolated as a clear oil (144 mg, 29%); -NMR (400 MHz, DMSO-c/6): delta 7.78 (d, J = 8.0 Hz, 2H), 7.48 (d, J = 8.0 Hz, 2H), 4.56 (d, J = 5.0 Hz, 1 H), 4.12-4.00 (m, 2H), 3.65-3.57 (m, 1 H). 2.43 (s, 3H), 1 .69-1 .54 (m, 2H), 1 .00 (d, J = 6.0 Hz, 3H).

This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products.If you are interested, you can also browse other articles of 24621-61-2, We look forward to the emergence of more reaction modes in the future.

Reference£º
Patent; IMPERIAL INNOVATIONS LIMITED; SCHNEIDER, Michael; NEWTON, Gary; CHAPMAN, Katie; PERRIOR, Trevor; JARVIS, Ashley; LOW, Caroline; AQIL, Rehan; FISHER, Martin; BAYFORD, Melanie; CHAPMAN, Nicholas; MARTIN, Nicholas; REISINGER, Tifelle; NEGOITA-GIRAS, Gabriel; (260 pag.)WO2019/73253; (2019); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Fun Route: New Discovery of 24621-61-2

A chemical reaction often occurs in steps, although it may not always be obvious to an observer. Thank you very much for taking the time to read this article. If you are also interested in other aspects of (S)-Butane-1,3-diol, CAS: 24621-61-2, you can also browse my other articles.

Rate laws may be derived directly from the chemical equations for elementary reactions. This is not the case, however, for ordinary chemical reactions.24621-61-2, name is (S)-Butane-1,3-diol, below Introduce a new synthetic route. , 24621-61-2

To a solution of (S)-1,3-butanediol (807 mg) in DMF (10 mL) at 0C was added potassium t-butoxide (7.2 mL of a 1M solution in THF). After 1 h, the mixture was cooled to -20C and then 2-chloro-3-(4-methylsulfonyl)phenyl-5-trifluoromethylpyridine (1 g) was added as a solid. The resulting mixture was stirred for 24 h, warming to r.t. To the mixture was added saturated NH4Cl and the mixture was extracted with ethyl acetate. The organics were dried (MgSO4) and concentrated. Flash chromatography (1:1 hexane/ethyl acetate) provided the title compound as a white solid (323 mg).1H NMR (300 MHz, acetone-d6): d 1.15 (d, 3H), 1.75-2.00 (m, 2H), 3.15 (s, 3H), 3.65 (d, 1H), 3.85-4.00 (m, 1H), 4.60 (dd, 2H), 7.95 (d, 2H), 8.03 (d, 2H), 8.10 (d, 1H), 8.57 (d, 1H).

A chemical reaction often occurs in steps, although it may not always be obvious to an observer. Thank you very much for taking the time to read this article. If you are also interested in other aspects of (S)-Butane-1,3-diol, CAS: 24621-61-2, you can also browse my other articles.

Reference£º
Patent; MERCK FROSST CANADA & CO.; EP1012142; (2004); B1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Flexible application of 24621-61-2 in synthetic route

Thank you very much for taking the time to read this article. If you are also interested in other aspects of (S)-Butane-1,3-diol, CAS: 24621-61-2, you can also browse my other articles.

24621-61-2, The molecularity of an elementary reaction is the number of molecules that collide during that step in the mechanism. If there is only a single reactant molecule in an elementary reaction, that step is designated as unimolecular.24621-61-2, name is (S)-Butane-1,3-diol. A new synthetic method of this compound is introduced below.

Example 1 Preparation of (3S)-1-p-Toluenesulfonyloxy-3-triethylsilyloxy-butane (2)To a stirred solution of the (S)-(+)-1,3-butanediol 1 (1 g, 11.1 mmol), DMAP (30 mg, 0.25 mmol) and Et3N (4.6 mL, 3.33 g, 33 mmol) in anhydrous methylene chloride (20 mL) p-toluenesulfonyl chloride (2.54 g, 13.3 mmol) was added at 0 C. The reaction mixture was stirred at 4 C. for 22 h. Methylene chloride was added and the mixture was washed with water, dried (Na2SO4) and concentrated under reduced pressure. A residue was chromatographed on silica gel with hexane/ethyl acetate (8:2, then 1:1) to afford the tosylate (2.31 g, 85% yield) as a colorless oil.To a stirred solution of the tosylate (2.31 g, 9.5 mmol) and 2,6-lutidine (1.2 mL, 1.12 g, 10.5 mmol) in anhydrous methylene chloride (15 mL) triethylsilyl trifluoromethanesulfonate (2.1 mL, 2.51 g, 9.5 mmol) was added at -50 C. The reaction mixture was allowed to warm to room temperature (4 h) and stirring was continued for additional 20 h. Methylene chloride was added and the mixture was washed with water, dried (Na2SO4) and concentrated under reduced pressure. A residue was chromatographed on silica gel with hexane/ethyl acetate (97:3) to afford the product 2 (2.71 g, 80% yield) as a colorless oil:[alpha]D+18.0 (c 2.38, CHCl3); 1H NMR (400 MHz, CDCl3) delta 7.77 (2H, d, J=8.2 Hz, o-HTs), 7.33 (2H, d, J=8.2 Hz, m-HTs), 4.10 (2H, t, J=6.1 Hz, 1-H2), 3.90 (1H, m, 3-H), 2.43 (3H, s, MeTs), 1.72 (2H, m, 2-H2), 1.10 (3H, d, J=6.2 Hz, 4-H3), 0.88 (9H, t, J=8.0 Hz, 3¡ÁSiCH2CH3), 0.50 (6H, q, J=8.0 Hz, 3¡ÁSiCH2CH3); 13C NMR (100 MHz) delta 144.62 (s, p-CTs), 133.03 (s, i-CTs), 129.72 (d, m-CTs), 127.82 (d, o-CTs), 67.78 (t, C-1), 64.46 (d, C-3), 38.47 (t, C-2), 23.82 (q, C-4), 21.52 (q, MeTs), 6.71 (q, SiCH2CH3), 4.77 (t, SiCH2CH3); MS (EI) m/z 359 (5, MH+), 329 (87, M+-C2H5), 259 (100), 233 (54), 197 (50), 179 (74), 163 (40), 149 (48), 135 (38), 115 (53), 91 (71); exact mass calculated for C15H25O4SSi (M+-C2H5) 329.1243, found 329.1239.

Thank you very much for taking the time to read this article. If you are also interested in other aspects of (S)-Butane-1,3-diol, CAS: 24621-61-2, you can also browse my other articles.

Reference£º
Patent; DeLuca, Hector F.; Clagett-Dame, Margaret; Plum, Lori A.; Chiellini, Grazia; Grzywacz, Pawel; US2009/170821; (2009); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Derivation of elementary reaction about 24621-61-2

This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products.If you are interested, you can also browse other articles of 24621-61-2, We look forward to the emergence of more reaction modes in the future.

One of the major reasons is to use measurements of the macroscopic properties of a system, such as the rate of change in the concentration of reactants or products with time, to discover the sequence of events that occur at the molecular level.24621-61-2, (S)-Butane-1,3-diol, introduce a new downstream synthesis route. 24621-61-2

Example 1; Preparation of (3S)-1-p-Toluenesulfonyloxy-3-triethylsilyloxy-butane (2); To a stirred solution of the (S)-(+)-1,3-butanediol 1 (1 g, 11.1 mmol), DMAP (30 mg, 0.25 mmol) and Et3N (4.6 mL, 3.33 g, 33 mmol) in anhydrous methylene chloride (20 mL) p-toluenesulfonyl chloride (2.54 g, 13.3 mmol) was added at 0 C. The reaction mixture was stirred at 4 C. for 22 h. Methylene chloride was added and the mixture was washed with water, dried (Na2SO4) and concentrated under reduced pressure. A residue was chromatographed on silica gel with hexane/ethyl acetate (8:2, then 1:1) to afford the tosylate (2.31 g, 85% yield) as a colorless oil.

This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products.If you are interested, you can also browse other articles of 24621-61-2, We look forward to the emergence of more reaction modes in the future.

Reference£º
Patent; DeLuca, Hector F.; Clagett-Dame, Margaret; Plum, Lori A.; Chiellini, Grazia; Grzywacz, Pawel; US2008/81800; (2008); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

The effect of the change of 24621-61-2 synthetic route on the product

This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products.If you are interested, you can also browse other articles of 24621-61-2, We look forward to the emergence of more reaction modes in the future.

One of the major reasons is to use measurements of the macroscopic properties of a system, such as the rate of change in the concentration of reactants or products with time, to discover the sequence of events that occur at the molecular level.24621-61-2, (S)-Butane-1,3-diol, introduce a new downstream synthesis route. 24621-61-2

General procedure: (R)-Ethyl 3-hydroxybutyrate (2.1 g, 16 mmol) and (R)-1,3 butanediol(1.0 g, 11 mmol) were combined and incubated with CAL-B (0.2 g,400 U) at 80 torr without solvent in a rotary evaporator. The reaction was monitored by withdrawing 5 muL portions of the reaction mixture,which were dissolved in 1.0 mL methanol for analysis by GC-MS. Upon consumption of the diol, the reaction mixture was taken up in dichloromethane,the beads were filtered and washed, and the solventremoved by rotary evaporation. Excess (R)-ethyl 3-hydroxybutyratewas removed by heating to 60 deg C under reduced pressure (1 torr).The residue was suspended in ethyl acetate, treated with activated carbon and filtered to yield (R)-3-hydroxybutyryl-(R)-3-hydroxybutyrateas a clear oil (1.2 g, 62%).

This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products.If you are interested, you can also browse other articles of 24621-61-2, We look forward to the emergence of more reaction modes in the future.

Reference£º
Article; Budin, Noah; Higgins, Erin; DiBernardo, Anthony; Raab, Cassidy; Li, Chun; Ulrich, Scott; Bioorganic Chemistry; vol. 80; (2018); p. 560 – 564;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

The effect of 24621-61-2 reaction temperature change on equilibrium

A chemical reaction often occurs in steps, although it may not always be obvious to an observer. Thank you very much for taking the time to read this article. If you are also interested in other aspects of (S)-Butane-1,3-diol, CAS: 24621-61-2, you can also browse my other articles.

The molecularity of an elementary reaction is the number of molecules that collide during that step in the mechanism. If there is only a single reactant molecule in an elementary reaction, that step is designated as unimolecular.24621-61-2, name is (S)-Butane-1,3-diol. A new synthetic method of this compound is introduced below. , 24621-61-2

EXAMPLE 38 2-((3S)-3-Hydroxy- 1-butyloxy)-3-(4-methylsulfonyl)phenyl-5-trifluoromethylpyridine To a solution of (S)-1,3-butanediol (807 mg) in DMF (10 mL) at 0 C. was added potassium t-butoxide (7.2 mL of a 1M solution in THF). After 1 h, the mixture was cooled to -20 C. and then 2-chloro-3-(4-methylsulfonyl)phenyl-5-trifluoromethylpyridine (1 g) was added as a solid. The resulting mixture was stirred for 24 h, warming to r.t. To the mixture was added saturated NH4Cl and the mixture was extracted with ethyl acetate. The organics were dried (MgSO4) and concentrated. Flash chromatography (1:1 hexane/ethyl acetate) provided the title compound as a white solid (323 mg). 1 H NMR (300 MHz, acetone-d6): d 1.15 (d, 3H), 1.75-2.00 (m, 2H), 3.15 (s, 3H), 3.65 (d, 1H), 3.85-4.00 (m, 1H), 4.60 (dd, 2H), 7.95 (d, 2H), 8.03 (d, 8.10 (d, 1H), 8.57 (d, 1H)., 24621-61-2

A chemical reaction often occurs in steps, although it may not always be obvious to an observer. Thank you very much for taking the time to read this article. If you are also interested in other aspects of (S)-Butane-1,3-diol, CAS: 24621-61-2, you can also browse my other articles.

Reference£º
Patent; Merck Frosst Canada & Co.; US6046217; (2000); A;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

The effect of 24621-61-2 reaction temperature change on equilibrium

A chemical reaction often occurs in steps, although it may not always be obvious to an observer. Thank you very much for taking the time to read this article. If you are also interested in other aspects of (S)-Butane-1,3-diol, CAS: 24621-61-2, you can also browse my other articles.

The molecularity of an elementary reaction is the number of molecules that collide during that step in the mechanism. If there is only a single reactant molecule in an elementary reaction, that step is designated as unimolecular.24621-61-2, name is (S)-Butane-1,3-diol. A new synthetic method of this compound is introduced below. , 24621-61-2

To a solution of (S)+}1,3-butanediol (10.0 g, 0.110 mol), was added triphenylmethylchloride (33.0 g, 0.330 mol), 4-dimethylaminopyridine (1.40 g, 11.5 mmol) in CH2Cl/pyridine (1:1, 500 mL).Stirring was continued over 48 h. The solvent was removed, the mixture was diluted with ether, washed with brine and dried over Na2SO4. The organic solution was filtered and concentrated. Silica gel chromatography with (5% ethyl acetate/hexanes) produced a clear oil (24 g) in 70% yield.

A chemical reaction often occurs in steps, although it may not always be obvious to an observer. Thank you very much for taking the time to read this article. If you are also interested in other aspects of (S)-Butane-1,3-diol, CAS: 24621-61-2, you can also browse my other articles.

Reference£º
Patent; Bristol-Myers Squibb Company; Merck & Co. Inc.; US6967196; (2005); B1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Fun Route: New Discovery of 24621-61-2

A chemical reaction often occurs in steps, although it may not always be obvious to an observer. Thank you very much for taking the time to read this article. If you are also interested in other aspects of (S)-Butane-1,3-diol, CAS: 24621-61-2, you can also browse my other articles.

Rate laws may be derived directly from the chemical equations for elementary reactions. This is not the case, however, for ordinary chemical reactions.24621-61-2, name is (S)-Butane-1,3-diol, below Introduce a new synthetic route. , 24621-61-2

EXAMPLE INEL SynthesisPreparation of (3S)-1-p-Toluenesulfonyloxy-3-triethylsilyloxy-butane (2); To a stirred solution of the (S)-(+)-1,3-butanediol 1 (1 g, 11.1 mmol), DMAP (30 mg, 0.25 mmol) and Et3N (4.6 mL, 3.33 g, 33 mmol) in anhydrous methylene chloride (20 mL)p-toluenesulfonyl chloride (2.54 g, 13.3 mmol) was added at 0 C. The reaction mixture was stirred at 4 C. for 22 h. Methylene chloride was added and the mixture was washed with water, dried (Na2SO4) and concentrated under reduced pressure. A residue was chromatographed on silica gel with hexane/ethyl acetate (8:2, then 1:1) to afford the tosylate (2.31 g, 85% yield) as colorless oil.To a stirred solution of the tosylate (2.31 g, 9.5 mmol) and 2,6-lutidine (1.2 mL, 1.12 g, 10.5 mmol) in anhydrous methylene chloride (15 mL) triethylsilyl trifluoromethanesulfonate (2.1 mL, 2.51 g, 9.5 mmol) was added at -50 C. The reaction mixture was allowed to warm to room temperature (4 h) and stirring was continued for additional 20 h. Methylene chloride was added and the mixture was washed with water, dried (Na2SO4) and concentrated under reduced pressure. A residue was chromatographed on silica gel with hexane/ethyl acetate (97:3) to afford the product 2 (2.71 g, 80% yield) as a colorless oil:[alpha]D+18.0 (c 2.38, CHCl3); 1H NMR (400 MHz, CDCl3) delta7.77 (2H, d, J=8.2 Hz, o-HTs), 7.33 (2H, d, J=8.2 Hz, m-HTs), 4.10 (2H, t, J=6.1 Hz, 1-H2), 3.90 (1H, m, 3-H), 2.43 (3H, s, McTs), 1.72 (2H, m, 2-H2), 1.10 (3H, d, J=6.2 Hz, 4-H3), 0.88 (9H, t, J=8.0 Hz, 3¡ÁSiCH2CH3), 0.50 (6H, q, J=8.0 Hz, 3¡ÁSiCH2CH3); 13C NMR (100 MHz) delta 144.62 (s, p-CTs), 133.03 (s, i-CTs), 129.72 (d, m-CTs), 127.82 (d, o-CTs), 67.78 (t, C-1), 64.46 (d, C-3), 38.47 (t, C-2), 23.82 (q, C-4), 21.52 (q, MeTs), 6.71 (q, SiCH2CH3), 4.77 (t, SiCH2CH3); MS (EI) m/z 359 (5, MH+), 329 (87, M+ -C2H5), 259 (100), 233 (54), 197 (50), 179 (74), 163 (40), 149 (48), 135 (38), 115 (53), 91 (71); exact mass calculated for C15H25O4SSi (M+ -C2H5) 329.1243, found 329.1239.

A chemical reaction often occurs in steps, although it may not always be obvious to an observer. Thank you very much for taking the time to read this article. If you are also interested in other aspects of (S)-Butane-1,3-diol, CAS: 24621-61-2, you can also browse my other articles.

Reference£º
Patent; WISCONSIN ALUMNI RESEARCH FOUNDATION; US2007/191316; (2007); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

The effect of the change of (S)-Butane-1,3-diol synthetic route on the product

Thank you very much for taking the time to read this article. If you are also interested in other aspects of (S)-Butane-1,3-diol, CAS: 24621-61-2, you can also browse my other articles.

24621-61-2, An elementary termolecular reaction involves the simultaneous collision of three atoms, molecules, or ions.19132-06-0, name is (2S,3S)-Butane-2,3-diol. Here is a downstream synthesis route of the compound 19132-06-0

Example 63 (R)-3- {2-CHLORO-4- [3- (4-CHLORO-2-PHENOXY-PHENOXY)-BUTOXY]-PHENYL}-PROPIONIC acid Step A (S) -Acetic acid 3-hydroxy-butyl ester; A mixture of (S)- (+)-1, 3-butanediol (10.0 g, 0.1 mol) and 2,4, 6-collidine (27 g, 0.2 mol) in DCM (100 mL) is cooled to-78 C. The reaction is then treated dropwise with acetyl chloride (10.4 g, 0.13 mol), and stirred for 2hr AT-78 C. The reaction is then allowed to warm to rt and stir for an additional hour. The reaction is then quenched with IN HCl and extracted with DCM. The organic layer is separated, washed with brine, and dried over NA2SO4. The organic is filtered, and the solvent is removed to afford 9.77 g (66%) of acetic acid 3-hydroxy-butyl ESTER. IH NMR (400 MHz, CDC13) ; MS (ES+) NILZ mass calcd for C6HI203 132, found 133 (M + 1).

Thank you very much for taking the time to read this article. If you are also interested in other aspects of (S)-Butane-1,3-diol, CAS: 24621-61-2, you can also browse my other articles.

Reference£º
Patent; ELI LILLY AND COMPANY; WO2005/19151; (2005); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate