The effect of the change of 24621-61-2 synthetic route on the product

This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products.If you are interested, you can also browse other articles of (S)-Butane-1,3-diol, We look forward to the emergence of more reaction modes in the future.

An elementary termolecular reaction involves the simultaneous collision of three atoms, molecules, or ions.24621-61-2, name is (S)-Butane-1,3-diol. Here is a downstream synthesis route of the compound 24621-61-2, 24621-61-2

S- (+)-1, 3-butanediol (96 mg, 1.065 mmol) in 3 ml of pyridine was cooled in an ice-water bath and 4,4′-dimethoxytrityl chloride (430 mg, 1.27 mmol) was added thereto. The resulting mixture was stirred for 6 hours at room temperature. 10 ml of 5% NAHCO3 was added thereto and the resulting solution was extracted with 15 ml of ethyl acetate. The organic layer was dried over MGS04 and evaporated under a reduced pressure. The resulting yellow liquid residue was purified by silica gel column chlomatography (eluent-ethyl acetate: hexane = 1: 3) to obtain the title compound (401 mg, 1.02 mmol) in a yield of 96%. Rf= 0.3 (ethyl acetate: Hexane = 1 : 2); IR (NACI) nu (cm-1) 3462, 3059, 3034, 2959, 2927, 2848,2835, 1607,1508, 1250; 1H NMR (Acetone-d6) delta 7.49 (br, 1H), 7.46 (br, 1H), 7.36-7. 18 (m, 7H), 6.86 (t, 2H, J=2. 6Hz), 6.84 (t, 2H, J=2.6Hz), 3.93 (br, 1H), 3.73 (s, 6H), 3. 50 (br, 1H), 3.28-3. 14 (m, 2H), 1.73 (m, 2H), 1. 11 (d, 3H, J=6. 2Hz) ; 13C-NMR (75.5 MHz, Acetone-d6) delta 158. 1, 145. 3, 136. 1, 136.0, 129.5, 127. 6, 127.2, 126. 1, 112.5, 85. 4, 64. 2, 60. 6, 54. 2, 39.0, 23.1; MS-FAB (m/z): [M] + calcd for C25H28O4, 392; found 392.; [alpha] 21D = +17. 6 (c 1.0, CHCl3), 24621-61-2

This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products.If you are interested, you can also browse other articles of (S)-Butane-1,3-diol, We look forward to the emergence of more reaction modes in the future.

Reference£º
Patent; POSTECH FOUNDATION; WO2004/63208; (2004); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

The effect of the change of (S)-Butane-1,3-diol synthetic route on the product

Thank you very much for taking the time to read this article. If you are also interested in other aspects of (S)-Butane-1,3-diol, CAS: 24621-61-2, you can also browse my other articles.

24621-61-2, An elementary termolecular reaction involves the simultaneous collision of three atoms, molecules, or ions.538-58-9, name is 1,5-Diphenylpenta-1,4-dien-3-one. Here is a downstream synthesis route of the compound 538-58-9

(Example 5-1) Under ice cooling, to a dichloromethane solution (20.0 ml) of (S)-1,3-butanediol (519 mg) were added triethylamine (1.04 ml) and tert-butylchlorodiphenylsilane (1.63 ml), followed by stirring at room temperature overnight. The reaction solution was poured into a saturated aqueous ammonium chloride solution, and extracted with ethyl acetate. The organic layer was washed with saturated sodium chloride solution, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The resulting residue was purified by silica gel chromatography to afford (2S)-4-{[tert-butyl(diphenyl)silyl]oxy}butan-2-ol (1.69 g). 1H NMR(400 MHz,CDCl3) delta: 1.05 (9H, s), 1.22 (3H, d, J = 6.3 Hz), 1.58-1.68 (1H, m), 1.69-1.81 (1H, m), 3.31 (1H, d, J = 2.0 Hz), 3.80-3.91 (2H, m), 4.07-4.15 (1H, m), 7.37-7.50 (6H, m), 7.69 (4H, d, J = 6.2 Hz).

Thank you very much for taking the time to read this article. If you are also interested in other aspects of (S)-Butane-1,3-diol, CAS: 24621-61-2, you can also browse my other articles.

Reference£º
Patent; Daiichi Sankyo Company, Limited; EP2471792; (2012); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Flexible application of (S)-Butane-1,3-diol in synthetic route

Thank you very much for taking the time to read this article. If you are also interested in other aspects of (S)-Butane-1,3-diol, CAS: 24621-61-2, you can also browse my other articles.

24621-61-2, The molecularity of an elementary reaction is the number of molecules that collide during that step in the mechanism. If there is only a single reactant molecule in an elementary reaction, that step is designated as unimolecular.24621-61-2, name is (S)-Butane-1,3-diol. A new synthetic method of this compound is introduced below.

Example 4 : (R)-2-(3-{3-[[2-Chloro-3-(trifluoromethyl) benzyl] (2,2- diphenylethyl) amino]-1-methyl-propoxy}-phenyl) acetic acid methyl ester ; a) Toluene-4-sulfonic acid- (S)-3-hydroxy-butyl ester; To a stirring solution of (S)-1, 3-butanediol (1.0 g, 0.01 mmol) and triethylamine (1.39 g, 0.014 mmol) in dichloromethane (10 mL) at-20C was added dropwise p-toluenesulfonyl chloride and the mixture was stirred for 2 h. The reaction mixture was then warmed to RT and stirred overnight. The reaction mixture was poured into cold H2O (20 mL), and extracted three times with dichloromethane. The organic extracts were then washed with brine. The organic layer was dried over sodium sulfate, filtered, and concentrated in vacuo to give 2.6 g (96% yield) of title compound as an oil. MS (ESI) 244.8 (M+). The crude tosylat was used without further purification.

Thank you very much for taking the time to read this article. If you are also interested in other aspects of (S)-Butane-1,3-diol, CAS: 24621-61-2, you can also browse my other articles.

Reference£º
Patent; SMITHKLINE BEECHAM CORPORATION; WO2003/82802; (2003); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Derivation of elementary reaction about (S)-Butane-1,3-diol

This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products.If you are interested, you can also browse other articles of 24621-61-2, We look forward to the emergence of more reaction modes in the future.

One of the major reasons is to use measurements of the macroscopic properties of a system, such as the rate of change in the concentration of reactants or products with time, to discover the sequence of events that occur at the molecular level.24621-61-2, (S)-Butane-1,3-diol, introduce a new downstream synthesis route. 24621-61-2

Example 1; Preparation of (3S)-1-p-Toluenesulfonyloxy-3-triethylsilyloxy-butane (2); To a stirred solution of the (S)-(+)-1,3-butanediol 1 (1 g, 11.1 mmol), DMAP (30 mg, 0.25 mmol) and Et3N (4.6 mL, 3.33 g, 33 mmol) in anhydrous methylene chloride (20 mL) p-toluenesulfonyl chloride (2.54 g, 13.3 mmol) was added at 0 C. The reaction mixture was stirred at 4 C. for 22 h. Methylene chloride was added and the mixture was washed with water, dried (Na2SO4) and concentrated under reduced pressure. A residue was chromatographed on silica gel with hexane/ethyl acetate (8:2, then 1:1) to afford the tosylate (2.31 g, 85% yield) as a colorless oil., 24621-61-2

This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products.If you are interested, you can also browse other articles of 24621-61-2, We look forward to the emergence of more reaction modes in the future.

Reference£º
Patent; DeLuca, Hector F.; Clagett-Dame, Margaret; Plum, Lori A.; Chiellini, Grazia; Grzywacz, Pawel; US2008/81800; (2008); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Flexible application of 24621-61-2 in synthetic route

A chemical reaction often occurs in steps, although it may not always be obvious to an observer. Thank you very much for taking the time to read this article. If you are also interested in other aspects of (S)-Butane-1,3-diol, CAS: 24621-61-2, you can also browse my other articles.

24621-61-2, The molecularity of an elementary reaction is the number of molecules that collide during that step in the mechanism. If there is only a single reactant molecule in an elementary reaction, that step is designated as unimolecular.24621-61-2, name is (S)-Butane-1,3-diol. A new synthetic method of this compound is introduced below.

To a solution of commercial available (s)-3-hydroxy butanol (10 g, Aldrich) in 50 mL of DMF, TsOH (20 mg, catalytic) and MeOPhCH (OMe) 2 (24 g) were added. After 3h at 35 C on a rotovap with slight vacuum, it was cooled and quenched with aq. Sat. NaHC03. The mixture was extracted with EtOAc (3x). The organic layers were washed with brine (2x), dried and concentrated. The crude product was evaporated with toluene (3x). [0230] The crude product was dissolved in 700 mL of CH2CI2. At 0 C, DIBAL-H solution (200 mL, 1.0 M, excess) was added. The reaction was warmed to room temperature overnight. Then it was quenched with methanol (50 mL), sat. Na2S04 at 0 C. The mixture was diluted with Et20 (1. 5L). After stirred for 5h, it was filtered through a pad of celite. The filtrate was concentrated to give an oil. The oil was purified on silica gel with Hexanes/EtOAc, 10: 1,6 : 1,3 : 1, and 1: 1 to give 24 g of desired product, 343-YW-203

A chemical reaction often occurs in steps, although it may not always be obvious to an observer. Thank you very much for taking the time to read this article. If you are also interested in other aspects of (S)-Butane-1,3-diol, CAS: 24621-61-2, you can also browse my other articles.

Reference£º
Patent; EISAI CO. LTD.; WO2003/76424; (2003); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Fun Route: New Discovery of 24621-61-2

A chemical reaction often occurs in steps, although it may not always be obvious to an observer. Thank you very much for taking the time to read this article. If you are also interested in other aspects of (S)-Butane-1,3-diol, CAS: 24621-61-2, you can also browse my other articles.

The molecularity of an elementary reaction is the number of molecules that collide during that step in the mechanism. If there is only a single reactant molecule in an elementary reaction, that step is designated as unimolecular.24621-61-2, name is (S)-Butane-1,3-diol. A new synthetic method of this compound is introduced below. , 24621-61-2

To a solution of (S)+}1,3-butanediol (10.0 g, 0.110 mol), was added triphenylmethylchloride (33.0 g, 0.330 mol), 4-dimethylaminopyridine (1.40 g, 11.5 mmol) in CH2Cl/pyridine (1:1, 500 mL).Stirring was continued over 48 h. The solvent was removed, the mixture was diluted with ether, washed with brine and dried over Na2SO4. The organic solution was filtered and concentrated. Silica gel chromatography with (5% ethyl acetate/hexanes) produced a clear oil (24 g) in 70% yield., 24621-61-2

A chemical reaction often occurs in steps, although it may not always be obvious to an observer. Thank you very much for taking the time to read this article. If you are also interested in other aspects of (S)-Butane-1,3-diol, CAS: 24621-61-2, you can also browse my other articles.

Reference£º
Patent; Bristol-Myers Squibb Company; Merck & Co. Inc.; US6967196; (2005); B1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Derivation of elementary reaction about 24621-61-2

This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products.If you are interested, you can also browse other articles of 24621-61-2, We look forward to the emergence of more reaction modes in the future.

One of the major reasons is to use measurements of the macroscopic properties of a system, such as the rate of change in the concentration of reactants or products with time, to discover the sequence of events that occur at the molecular level.24621-61-2, (S)-Butane-1,3-diol, introduce a new downstream synthesis route. 24621-61-2

The flask was charged with (S) -butane-1,3-diol (1.00 g, 11.10 mmol) in dichloromethane (DCM) (27 mL),Triethylamine (1.347 g, 13.32 mmol),4-Dimethylaminopyridine (0.136 g, 1.110 mmol) and 4-methylbenzene-1-sulfonyl chloride (2.327 g, 12.21 mmol) were added. The reaction was stirred at room temperature for 1 hour.Quench the reaction with saturated NH 4 Cl,Extracted with DCM. The organic portion was dried over MgSO 4, filtered and concentrated under reduced pressure to give a residue which was purified by silica gel chromatography eluting with 0-50% ethyl acetate / heptane to give the product (0. 288 g, 1.179 mmol, yield 10.62%).

This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products.If you are interested, you can also browse other articles of 24621-61-2, We look forward to the emergence of more reaction modes in the future.

Reference£º
Patent; Abbvie Incorporated; Argiriadi, Maria A.; Breinlinger, Eric C.; Chien, Ellen Yulin Tsai; Cowart, Marlon D.; Frank, Kristine E.; Friedman, Michael M.; Hardy, David J.; Herold, J. Martin; Liu, Huaqing; Chu, Wei; Scanio, Marc J.; Schrimpf, Michael R.; Vargo, Thomas R.; Van Epps, Stacy A.; Webster, Matthew P.; Little, Andrew J.; Dunstan, Teresa A.; Katcher, Matthew H.; Schedler, David A.; (232 pag.)JP6557436; (2019); B1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

The effect of 24621-61-2 reaction temperature change on equilibrium

A chemical reaction often occurs in steps, although it may not always be obvious to an observer. Thank you very much for taking the time to read this article. If you are also interested in other aspects of (S)-Butane-1,3-diol, CAS: 24621-61-2, you can also browse my other articles.

The molecularity of an elementary reaction is the number of molecules that collide during that step in the mechanism. If there is only a single reactant molecule in an elementary reaction, that step is designated as unimolecular.24621-61-2, name is (S)-Butane-1,3-diol. A new synthetic method of this compound is introduced below. , 24621-61-2

General procedure: (R)-Ethyl 3-hydroxybutyrate (2.1 g, 16 mmol) and (R)-1,3 butanediol(1.0 g, 11 mmol) were combined and incubated with CAL-B (0.2 g,400 U) at 80 torr without solvent in a rotary evaporator. The reaction was monitored by withdrawing 5 muL portions of the reaction mixture,which were dissolved in 1.0 mL methanol for analysis by GC-MS. Upon consumption of the diol, the reaction mixture was taken up in dichloromethane,the beads were filtered and washed, and the solventremoved by rotary evaporation. Excess (R)-ethyl 3-hydroxybutyratewas removed by heating to 60 deg C under reduced pressure (1 torr).The residue was suspended in ethyl acetate, treated with activated carbon and filtered to yield (R)-3-hydroxybutyryl-(R)-3-hydroxybutyrateas a clear oil (1.2 g, 62%).

A chemical reaction often occurs in steps, although it may not always be obvious to an observer. Thank you very much for taking the time to read this article. If you are also interested in other aspects of (S)-Butane-1,3-diol, CAS: 24621-61-2, you can also browse my other articles.

Reference£º
Article; Budin, Noah; Higgins, Erin; DiBernardo, Anthony; Raab, Cassidy; Li, Chun; Ulrich, Scott; Bioorganic Chemistry; vol. 80; (2018); p. 560 – 564;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Flexible application of 24621-61-2 in synthetic route

Thank you very much for taking the time to read this article. If you are also interested in other aspects of (S)-Butane-1,3-diol, CAS: 24621-61-2, you can also browse my other articles.

24621-61-2, The molecularity of an elementary reaction is the number of molecules that collide during that step in the mechanism. If there is only a single reactant molecule in an elementary reaction, that step is designated as unimolecular.24621-61-2, name is (S)-Butane-1,3-diol. A new synthetic method of this compound is introduced below.

Production of (S)-3-Hydroxy-1-(p-toluenesulfonyloxy)butane In the same manner as in the first step of Production Example 32, the desired compound (77.5 g) was obtained as light brown oil from (S)-1,3-butanediol (30.0 g) and p-toluenesulfonyl chloride (69.8 g). The thus-obtained oil was immediately subjected to the next step., 24621-61-2

Thank you very much for taking the time to read this article. If you are also interested in other aspects of (S)-Butane-1,3-diol, CAS: 24621-61-2, you can also browse my other articles.

Reference£º
Patent; Fujisawa Pharmaceutical Co., Ltd.; US6420409; (2002); B1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Flexible application of 24621-61-2 in synthetic route

Thank you very much for taking the time to read this article. If you are also interested in other aspects of (S)-Butane-1,3-diol, CAS: 24621-61-2, you can also browse my other articles.

24621-61-2, The molecularity of an elementary reaction is the number of molecules that collide during that step in the mechanism. If there is only a single reactant molecule in an elementary reaction, that step is designated as unimolecular.24621-61-2, name is (S)-Butane-1,3-diol. A new synthetic method of this compound is introduced below.

Representative example 44: Synthesis of 1-((R)-3-(2-(4-hydroxy-1-((2R,3S)-2- propyl-1-(3-(trifluoromethyl)picolinoyl)-3-(5-(trifluoromethyl)thiophen-3- yloxy)piperidine-3-carbonyl)piperidin-4-yl)phenoxy)butyl)cyclobutanecarboxylic acid A31. Step 1: To a 0C DCM (100 mL) solution of (S)-(+)-1 ,3-Butanol (7g, 77.6 mmol) containing Et^N (14 mL, 1.3equiv) was added drop wise a DCM solution (60 mL) of TsCI (1.05 equiv, 15g). Reaction was warmed-up to Rt and stirred overnight. After 18 hours, the DCM layer was washed with HCI 1.0N (X2), then NaHC03, then brine. Organic layer was dried over MgS04, filtered and concentrated down to 15 g of crude oil. The residue was purified by silica gel chromatography (10% to 40% EtOAc in hexanes) to provide 13 g (69% yield) of (S)-3-hydroxybutyl 4- methylbenzenesulfonate 94.

Thank you very much for taking the time to read this article. If you are also interested in other aspects of (S)-Butane-1,3-diol, CAS: 24621-61-2, you can also browse my other articles.

Reference£º
Patent; SCHERING CORPORATION; BOGEN, Stephane, L.; MA, Yao; WANG, Yaolin; LAHUE, Brian Robert; NAIR, Latha, G.; SHIZUKA, Manami; VOSS, Matthew Ernst; KIROVA-SNOVER, Margarita; PAN, Weidong; TIAN, Yuan; KULKARNI, Bheemashankar, A.; GIBEAU, Craig, R.; LIU, Yuan; SCAPIN, Giovanna; RINDGEN, Diane; DOLL, Ronald, J.; GUZI, Timothy, J.; HICKLIN, Danny, J.; NOMEIR, Amin; SEIDEL-DUGAN, Cynthia; SHIPPS, Gerald, W., Jr.; MACCOSS, Malcolm; WO2011/46771; (2011); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate