A new synthetic route of 3685-23-2

When you point to this article, it is believed that you are also very interested in this compound(3685-23-2)Computed Properties of C7H13NO2 and due to space limitations, I can only present the most important information.

Computed Properties of C7H13NO2. So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic. Compound: cis-4-Aminocyclohexane carboxylic acid, is researched, Molecular C7H13NO2, CAS is 3685-23-2, about Synthesis of di- and tripeptides containing 4-aminocyclohexanecarboxylic acid.

Amino acid derivatives were coupled to cis- and trans-4-aminocyclohexanecarboxylic acid with diethylphosphoryl cyanide as coupling reagent. Treatment of trans-I (R = Me3CO2C, R1 = OH) with diethylphosphoryl cyanide, followed by condensation with L-valine Me ester gave trans I (R = Me3CO2C, R1 = Val-OMe) (II). Deprotection and coupling of II with N-tert-butoxycarbonyl-L-alanine gave trans-I (R = Me3CO2C-Ala-, R1 = Val-OMe). Similar transformations were effected with cis-I (R = Me3CO2C, R1 = OH). Other coupling procedures investigated were the carbodiimide, p-nitrophenyl active ester, and sym. anhydride methods, which were less satisfactory for coupling to cyclohexane amino acids.

When you point to this article, it is believed that you are also very interested in this compound(3685-23-2)Computed Properties of C7H13NO2 and due to space limitations, I can only present the most important information.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Brief introduction of 3685-23-2

In some applications, this compound(3685-23-2)Reference of cis-4-Aminocyclohexane carboxylic acid is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Zhang, Liyuan; Yu, Runzhong; Yu, Yingbo published the article 《Analysis of metabolites and metabolic mechanism in Bt transgenic and non-transgenic maize》. Keywords: metabolite metabolic mechanism Bt transgenic maize.They researched the compound: cis-4-Aminocyclohexane carboxylic acid( cas:3685-23-2 ).Reference of cis-4-Aminocyclohexane carboxylic acid. Aromatic heterocyclic compounds can be divided into two categories: single heterocyclic and fused heterocyclic. In addition, there is a lot of other information about this compound (cas:3685-23-2) here.

The gas chromatog.-mass spectrometry was used to isolate and identify metabolites of non-transgenic and Bacillus thuringiensis transgenic maize. The non-targeted metabolomics technique was used to anal. the metabolic pathway and mechanism of two kinds of maize. The methanol was used as extractant and the N,O-bis(trimethylsilyl) trifluoroacetamide was used as derivatization reagent. 38 kinds of metabolites were isolated and identified from non-transgenic maize, and 61 kinds of metabolites were isolated and identified in Bacillus thuringiensis transgenic maize. The specific metabolites between non-transgenic and Bacillus thuringiensis transgenic maize were analyzed. The metabolic pathway of specific metabolites was analyzed by KEGG annotation. The metabolic mechanism of non-transgenic maize and Bacillus thuringiensis transgenic maize was explored. The result indicated there were more metabolites involved in metabolic pathways in Bacillus thuringiensis transgenic maize than in non-transgenic maize, and tricarboxylic acid cycle and energy metabolism pathways of Bacillus thuringiensis transgenic maize are found to be higher than that of non-transgenic maize. The metabolic pathway of Bacillus thuringiensis transgenic maize conforms to the biol. activity law.

In some applications, this compound(3685-23-2)Reference of cis-4-Aminocyclohexane carboxylic acid is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Application of 3685-23-2

As far as I know, this compound(3685-23-2)Computed Properties of C7H13NO2 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Most of the natural products isolated at present are heterocyclic compounds, so heterocyclic compounds occupy an important position in the research of organic chemistry. A compound: 3685-23-2, is researched, SMILESS is N[C@H]1CC[C@H](CC1)C(O)=O, Molecular C7H13NO2Journal, Article, Research Support, U.S. Gov’t, Non-P.H.S., Brain Research called Effects of some conformationally restricted GABA analogs on GABA membrane binding and nerve ending transport, Author is Hitzemann, Robert J.; Loh, Horace H., the main research direction is GABA transport brain; receptor GABA brain membrane.Computed Properties of C7H13NO2.

By using a series of aminocyclopentane- and aminocyclohexanecarboxylic acids, as well as some naturally occurring amino acids, it was possible to determine some aspects of the spatial topog. of the GABA [56-12-2] membrane binding and transport sites in the rat brain. The Na-independent GABA binding site had a different spatial topog. than the Na-dependent binding site in that (±)-trans-3-aminocyclopentanecarboxylic acid (I) [19297-28-0] was 7-fold more potent than (±)-cis-3-aminocyclopentanecarboxylic acid (II) [49805-32-5] in inhibiting Na-independent binding, but only 1.6 times more potent in inhibiting Na-dependent binding. The nerve ending GABA transport site was similar to the Na-dependent GABA binding site in that it accommodated both I and II. However, the transport site differed from the binding site in that II was a potent inhibitor of transport but a weak inhibitor of binding. In addition to the differences in spatial characteristics, differences in the subcellular distribution of Na-independent and Na-dependent binding sites were observed The former were found primarily in the nerve ending-mitochondrial fraction, whereas the latter were primarily found in the microsomal fraction.

As far as I know, this compound(3685-23-2)Computed Properties of C7H13NO2 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Some scientific research about 3685-23-2

When you point to this article, it is believed that you are also very interested in this compound(3685-23-2)Recommanded Product: cis-4-Aminocyclohexane carboxylic acid and due to space limitations, I can only present the most important information.

The chemical properties of alicyclic heterocycles are similar to those of the corresponding chain compounds. Compound: cis-4-Aminocyclohexane carboxylic acid, is researched, Molecular C7H13NO2, CAS is 3685-23-2, about Synthesis and antitumor activity of nonsymmetric phosphoric acid triamides, the main research direction is phosphoric acid triamide nonsym preparation acute toxicity antitumor activity; amide phosphoric acid nonsym preparation acute toxicity antitumor activity.Recommanded Product: cis-4-Aminocyclohexane carboxylic acid.

R1R2P(O)NHR3 (R1, R2 independently = aziridino, N(CH2CH2Cl)2, NMe2, morpholino or NHCH2CH2OH; R3 = 4-R-substituted cyclohexyl (R = H, cis- and trans-CO2H, cis- and trans-CO2Et)) were prepared and tested for acute toxicity and antitumor activity. All the 12 tested compounds possess a lower antitumor activity as compared to that of the reference drug thiophosphamide. The antitumor activity of nonsym. phosphoric acid triamides is determined for the most part by the nature of amide residues attached at the P atom. The antitumor effect can be varied within a broad range by changing this residue, the maximum antitumor activity being inherent in nonsym. triamides containing the ethylenimine residue.

When you point to this article, it is believed that you are also very interested in this compound(3685-23-2)Recommanded Product: cis-4-Aminocyclohexane carboxylic acid and due to space limitations, I can only present the most important information.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Analyzing the synthesis route of 3685-23-2

When you point to this article, it is believed that you are also very interested in this compound(3685-23-2)Computed Properties of C7H13NO2 and due to space limitations, I can only present the most important information.

Computed Properties of C7H13NO2. The protonation of heteroatoms in aromatic heterocycles can be divided into two categories: lone pairs of electrons are in the aromatic ring conjugated system; and lone pairs of electrons do not participate. Compound: cis-4-Aminocyclohexane carboxylic acid, is researched, Molecular C7H13NO2, CAS is 3685-23-2, about Liquid-phase hydrogenation of some aromatic acids on ruthenium catalysts. Author is Ponomarev, A. A.; Ryzhenko, L. M.; Smirnova, N. S..

Using 10% RuO2 or Ru on activated the hydrogenation was carried out at 100-20° in H2O or in aqueous alk. solutions The following compounds gave 60-99% yields of the following products (starting compound and product given): p-H2NC6H4CO2H, p-aminohexa-hydrobenzoic acid (I); p-O2NC6H4CO2H, I; m-H2NC6H4CO2H, m-aminohexahydrobenzoic acid (II), m-O2NC6H4CO2H, II; m-NaOC6H4CO2Na, m-hydroxyhexahydrobenzoic acid; disodium 2-methylterephthalate, 2-methylhexahydroterephthalic acid.

When you point to this article, it is believed that you are also very interested in this compound(3685-23-2)Computed Properties of C7H13NO2 and due to space limitations, I can only present the most important information.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Chemical Research in 3685-23-2

When you point to this article, it is believed that you are also very interested in this compound(3685-23-2)Electric Literature of C7H13NO2 and due to space limitations, I can only present the most important information.

Heterocyclic compounds can be divided into two categories: alicyclic heterocycles and aromatic heterocycles. Compounds whose heterocycles in the molecular skeleton cannot reflect aromaticity are called alicyclic heterocyclic compounds. Compound: 3685-23-2, is researched, Molecular C7H13NO2, about Modular click chemistry libraries for functional screens using a diazotizing reagent, the main research direction is alkyl aryl azide triazole chemoselective preparation; fluorosulfonyl azide generation chemoselective diazotization primary amine; combinatorial generation library alkyl aryl azide cycloaddition alkyne; functional screen click chem azide generated in situ.Electric Literature of C7H13NO2.

Alkyl and aryl azides were prepared from the corresponding primary alkyl and aryl amines by reaction with fluorosulfonyl azide generated in situ from a fluorosulfonylimidazolium triflate and sodium azide, expanding access to azides and both to the 1,2,3-triazoles derived from them and to functional screens employing them. The method allowed the preparation of a library of >1000 azides from the corresponding amines; the azide library underwent copper-catalyzed azide-alkyne cycloaddition reactions to yield a library of >1000 1,2,3-triazoles.

When you point to this article, it is believed that you are also very interested in this compound(3685-23-2)Electric Literature of C7H13NO2 and due to space limitations, I can only present the most important information.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Simple exploration of 3685-23-2

As far as I know, this compound(3685-23-2)Computed Properties of C7H13NO2 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

The chemical properties of alicyclic heterocycles are similar to those of the corresponding chain compounds. Compound: cis-4-Aminocyclohexane carboxylic acid, is researched, Molecular C7H13NO2, CAS is 3685-23-2, about Competing fragmentation processes of β-substituted propanoate ions upon collision induced dissociation, the main research direction is competing fragmentation process beta substituted propanoate ion CID.Computed Properties of C7H13NO2.

Rationale : When subjected to collisional activation, gas-phase carboxylate ions typically undergo decarboxylation. However, alternative fragmentation processes dominate when the carboxylate group is located within certain structural motifs. In this work, the fragmentation processes of β-substituted carboxylate ions are characterized to improve correlations between reactivity and structure. Methods : Mass spectra were collected using both ion trap and triple quadrupole mass spectrometers operating in the neg. ion mode; collision induced dissociation (CID) of ions was used to study the relationship between product ions and the structures of their precursor ions. Quantum mech. computations were performed on a full range of reaction geometries at the MP2/6-311++G(2d,p)//B3LYP/6-31++G(2d,p) level of theory. Results : For a series of β-substituted carboxylate ions, a product ion corresponding to the anion of the β-substituent was obtained upon CID. Detailed computations indicated that decarboxylative elimination and at least one other fragmentation mechanism had feasible energetics for the formation of substituent anions differing in their gas-phase basicities. Predicted energetics for anti- and synperiplanar alignments in the transition structures for decarboxylative elimination correlated with the positions of crossover points in breakdown curves acquired for conformationally constrained ions. Conclusions : The feasibility of more than one mechanism was established for the fragmentation of β-substituted propanoates. The contribution of each mechanistic pathway to the formation of the substituent anion was influenced by structural variations and conformational constraints, but mostly depended on the nature of the substituent.

As far as I know, this compound(3685-23-2)Computed Properties of C7H13NO2 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Properties and Exciting Facts About 3685-23-2

As far as I know, this compound(3685-23-2)Product Details of 3685-23-2 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Prout, Franklin S.; Beaucaire, Victor D.; Dyrkacz, Gary R.; Koppes, William M.; Kuznicki, Robert E.; Marlewski, Theordore A.; Pienkowski, James J.; Puda, Jacqueline M. published the article 《Knoevenagel Reaction. Kinetic study of the reaction of (+)-3-methyl-cyclohexanone with malononitrile》. Keywords: Knoevenagel condensation malononitrile methylcyclohexanone; cyclohexanone methyl malononitrile Knoevenagel condensation; amino acid catalyst Knoevenagel condensation.They researched the compound: cis-4-Aminocyclohexane carboxylic acid( cas:3685-23-2 ).Product Details of 3685-23-2. Aromatic heterocyclic compounds can be divided into two categories: single heterocyclic and fused heterocyclic. In addition, there is a lot of other information about this compound (cas:3685-23-2) here.

The condensation of malononitrile with (+)-3-methylcyclohexanone produced an 80-85% yield of (-)-3-methylcyclohexylidenemalononitrile. The reaction, followed polarimetrically in aqueous alc., is kinetically second order and efficiently catalyzed by weak bases (ω-amino acids, cyclic amino acids, NH4OAc) furnishing solutions having an apparent pH 7.5-8.0. With β-alanine as catalyst, the Ea was 7.6 kcal/mole compared to 11 kcal/mole uncatalyzed. Stronger bases (Barbital, NaOAc, LOAc, KF, piperidine) effect more rapid condensation but poorer kinetics because of telomerization of malononitrile at the higher pHs.

As far as I know, this compound(3685-23-2)Product Details of 3685-23-2 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

The effect of the change of synthetic route on the product 3685-23-2

As far as I know, this compound(3685-23-2)Product Details of 3685-23-2 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Synthesis of an octadecapeptide and its 18-amide analog corresponding to the first eighteen amino acid residues of corticotropin (ACTH) and their biological activities》. Authors are Otsuka, Hideo; Inouye, Ken; Shinozaki, Fusako; Kanayama, Makoto.The article about the compound:cis-4-Aminocyclohexane carboxylic acidcas:3685-23-2,SMILESS:N[C@H]1CC[C@H](CC1)C(O)=O).Product Details of 3685-23-2. Through the article, more information about this compound (cas:3685-23-2) is conveyed.

The title compound (I) and its 18-amide analog (II) were synthesized. The activities of I, II, H-Gly-Tyr-Ser-Met-Glu-His-Phe-Arg-Try-Gly-Lys-Pro-Val-Gly-Arg-Arg-OH (III) (CA 63, 670f), and H-Gly-Tyr-Ser-Met-Glu-His-Phe-Arg-Try-Gly-Lys-Pro-Val-Gly-Lys-Arg-Arg-NH2 (IV) (CA 63, 16462d) were compared (cf. the table). (BOC = tert-BuO2C and Cbz = PhCH2O2C). Steroidogenic U.S.P. units/mg., Lipolytic minimal effective dose (γ); In vivo, In vitro, Rabbit, Rat; I, 17.07, 9.35, 0.000075, 0.0045; II, 39.6;58.0, 4.7;11.5, 0.000004, 0.0027; III, 0.124, 0.134, 0.00093, 0.021; IV, 2.72; 1.26, 0.00042, 0.0037; Coupling of BOC-Ser-Tyr-Ser-Met-N3 with H-Glu(γ-tert-Bu)-His-Phe-Arg-Try-Gly-OH gave BOC-Ser-Tyr-Ser-Met-Glu(γ-tert-Bu)-His-Phe-Arg-Try-Gly-OH (V), m. 202° (decomposition), [α]24D -13.2° (c 1.0, HCONMe2). Reaction of Cbz-Lys(BOC)-Pro-Val-Gly-Lys(BOC)-N3 with either H-Lys(BOC)-Arg-Arg-OH or its amide gave Cbz-Lys(BOC)-Pro-Val-Gly-Lys(BOC)-Lys(BOC)-Arg-Arg-OH (VI), [α]25.5D -46.1° (c 1.0, 50% AcOH), or its amide (VII), [α]22.5D -43.7° (c 1.75, 50% AcOH). Coupling of N-hydroxysuccinimide ester of V with the hydrogenolyzed VI or VII gave BOC-Ser-Tyr-Ser-Met-Glu(γ-tert-Bu)-His-Phe-Arg-Try-Gly-Lys(BOC)-Pro-Val-Gly-Lys(BOC)-Lys(BOC)-Arg-Arg-OH (VIII) or its amide (IX), resp. VIII was purified on carboxymethyl cellulose columns and treated with 90% F3CCO2H to give I, λ (0.1N NaOH) 281.5 mμ (ε 7030), 288.5 mμ (ε 6820), [α]25D -54.6° (c 0.5, 0.1N AcOH). Similarly, IX gave II, λ (0.1N NaOH) 281.5 mμ (ε 7050), 288.5 mμ (ε 6740), [α]24D -55.8° (c 0.5, 0.1N AcOH). Amino acid analysis of I and II confirmed their structures.

As far as I know, this compound(3685-23-2)Product Details of 3685-23-2 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Extended knowledge of 3685-23-2

As far as I know, this compound(3685-23-2)Formula: C7H13NO2 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Activation of the amide group by acylation. V. Inclusion of amino acid residues into linear and cyclic peptides》. Authors are Antonov, V. K.; Agadzhanyan, Ts. E.; Telesnina, T. R.; Shemyakin, M. M..The article about the compound:cis-4-Aminocyclohexane carboxylic acidcas:3685-23-2,SMILESS:N[C@H]1CC[C@H](CC1)C(O)=O).Formula: C7H13NO2. Through the article, more information about this compound (cas:3685-23-2) is conveyed.

cf. CA 63, 16255f. Dipeptides and lactams acylated at the amide-N by amino acid residues were shown to isomerize to give corresponding linear or cyclic peptides through intermediate azocyclols, which can also undergo dehydration to form acylamidines. The transannular interaction of amide groups in 9-10-membered cyclopeptides can also result in similar acylamidines; such a process takes place during mass spectrometry of cyclopeptides. N-Phthaloylglycylglycine Et ester and azidoacetyl chloride refluxed in MePh 10 hrs. gave after filtration and evaporation 46% N-azidoacetyl-N’-phthaloylglycylglycine Et ester, m. 115-16°. Similarly were prepared 36% N-azidoacetyl-N’-phthaloylglycyl-L-leucine Et ester, m. 118-19°. The former treated with 28% HBr in AcOH overnight in the cold, diluted with Et2O, and the resulting precipitate (I) treated with Et3N in tetrahydrofuran gave 70% N-phthaloylglycylglycylglycine Et ester, m. 228-9°. Similarly was prepared N-phthaloylglycylglycyl-L-leucine Et ester, m. 155-6°. I and H2O in 5 min. gave 73% 2-phthaloylaminomethyl-3-carbethoxymethyl-Δ1-imidazolin-4-one, m. 153-4°. Similarly was obtained 63% 2-phthaloylaminomethyl-3-(1-carbethoxy-3-methylbutyl)-Δ1-imidazolin-4-one, m. 117-18°. Carbobenzoxy-β-alanyl chloride and butyrolactam in Et2O were treated at 5° with Et3N to yield in 1 day at 20° 58% N-carbobenzoxy-β-alanylbutyrolactam (II), m. 94-5°. Similar reaction with valerolactam gave N-carbobenzoxy-β-alanylvalerolactam, m. 60-1°. Similarly was prepared 50% N-carbobenzoxy-β-alanylcaprolactam, m. 60-1°. II hydrogenated over Pd in Et2O gave 38% cyclo(β-alanyl-γ-aminobutyryl) (III), m. 173°, also formed from II by treatment with 27% HBr in AcOH 45 min.; HBr salt m. 119-20°. Similarly was obtained cyclo(β-alanyl-δ-aminovaleryl) (IV), m. 187°, and 61% cyclo(β-alanyl-ε-aminocaproyl) (V), m. 259°. III heated in xylene 1 hr. under azeotropic conditions of H2O removal gave 68% 1,2-trimethylene-6-oxo-1,4,5,6-tetrahydropyrimidine (IIIa), b12 152-4°. IV similarly gave 45% 1,2-tetramethylene-6-oxo-1,4,5,6-tetrahydropyrimidine (IVa), b12 160° (no reaction took place in ο-Cl2C6H4 in 4 hrs. with V). III heated with H2O 5 min. gave 80% N-[1-aza-1-cyclopenten-2-yl]-3-aminopropionic acid (VI), decomposed 186-7°. H2NCH2CH2CO2H in MeOH was treated with O-methylbutyrolactam and gave after heating 10 min. 97% VI. Similarly O-methylvalerolactam gave 95% N-[1-aza-1-cyclohexen-2-yl]-3-aminopropionic acid, m. 186°, which heated with removal of H2O in Cl2C6H4 gave 91% IVa. Similarly O-methylcaprolactam gave 93% N-[1-aza-1-cyclohepten-2-yl]-3-aminopropionic acid, m. 200-1°, which heated in Cl2C6H4 gave 12% cyclo(β-alanyl-ε-aminocapropyl) and 80% 1,2-pentamethylene-6-oxo-1,4,5,6-tetrahydropyrimidine, b10 185-90°, m. 35°. Heating VI in xylene with removal of H2O gave IIIa. The latter kept with H2O 2 days gave VI, while H2O-Ag2O gave 32% VI and 54% cyclo(β-alanyl-γ-aminobutyryl). The above analogs of VI reacted similarly.

As far as I know, this compound(3685-23-2)Formula: C7H13NO2 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate