Flexible application of 4254-15-3 in synthetic route

Thank you very much for taking the time to read this article. If you are also interested in other aspects of (S)-Propane-1,2-diol, CAS: 4254-15-3, you can also browse my other articles.

4254-15-3, The molecularity of an elementary reaction is the number of molecules that collide during that step in the mechanism. If there is only a single reactant molecule in an elementary reaction, that step is designated as unimolecular.4254-15-3, name is (S)-Propane-1,2-diol. A new synthetic method of this compound is introduced below.

To (S)-propane diol (4.89 g, 64.2 mmol) in DCM (20 ml_) at -20 0C (CO2/ ethylene glycol bath) was added TEA (11.2 ml_, 80.3 mmol) followed by p-toluenesulfonyl chloride (12.3 g, 64.3 mmol) in DCM (26 mL) dropwise over 30 minutes. The cold bath was allowed to expire while stirring for 26h. DCM was added and the reaction was washed with 1 N HCI, water, and brine. The organic layer was dried (MgSO4), filtered, and concentrated in vacuo. The residue was purified by silica gel chromatography (0-40% EtOAc/Hex over 40 minutes) to provide the tosylate (8.37 g, 36 .4 mmol).

Thank you very much for taking the time to read this article. If you are also interested in other aspects of (S)-Propane-1,2-diol, CAS: 4254-15-3, you can also browse my other articles.

Reference£º
Patent; SCHERING CORPORATION; WO2009/5645; (2009); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Discovery of 4254-15-3

According to the analysis of related databases, 4254-15-3, the application of this compound in the production field has become more and more popular.

Adding a certain compound to certain chemical reactions, such as: 4254-15-3,(S)-Propane-1,2-diol, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound 4254-15-3,4254-15-3

To a solution of (S)-1,2-propanediol (20.0 g, 0.263 mol), triethylamine (31.9 g, 0.315 mol), 4-dimethylaminopyridine (1.28 g, 10.5 mmol) in CH2Cl2 (200 mL) was added tert-butyldimethylsiloxy chloride (47.3 g, 0.315 mol) at 22 C. The mixture was allowed to stir for 18 h. The mixture was diluted with CH2Cl2, washed with water and sat. aqueous NH4Cl. The organic solution was dried over Na2SO4, filtered and concentrated under reduced pressure. Silica gel chromatography (5% ethyl acetate/hexanes) of the concentrate gave 45.0 g of the title compound as a clear oil in 90% yield.

According to the analysis of related databases, 4254-15-3, the application of this compound in the production field has become more and more popular.

Reference£º
Patent; Bristol-Myers Squibb Company; Merck & Co. Inc.; US6967196; (2005); B1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Continuously updated synthesis method about (S)-Propane-1,2-diol

At the same time, in my other blogs, there are other synthetic methods of this type of compound, (S)-Propane-1,2-diol, and friends who are interested can also refer to it.

In the chemical reaction process,reaction time,type of solvent,can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product.An updated downstream synthesis route of 4254-15-3,(S)-Propane-1,2-diol, as follows.4254-15-3

Example 18C N-[(2Z)-3-butyl[1,3]thiazolo[4,5-c]pyridin-2(3H)-ylidene]-2-{[(2S)-2-hydroxypropyl]oxy}-5-(trifluoromethyl)benzamide (S)-propane-1,2-diol (52 mg, 0.68 mmol) in THF (1 mL) was treated with NaH (60percent dispersion; 27 mg, 0.68 mmol) at room temperature for 20 minutes. The mixture was cooled to 0¡ã C. and a solution of Example 18B (90 mg, 0.23 mmol) in THF (1 mL) was added. The mixture was allowed to warm to room temperature, and stirred for 4 hours. The mixture was diluted with saturated aqueous NaHCO3 (20 mL) and extracted with ethyl acetate (2.x.30 mL). The combined organic extracts were dried over anhydrous Na2SO4, filtered, and concentrated. The residue was purified by column chromatography using an Analogix.(R). Intelliflash280.(TM). (SiO2, 0-100percent ethyl acetate in hexanes) to afford 19 mg (19percent) of the title compound. 1H NMR (500 MHz, CDCl3) delta ppm 1.04 (t, J=7.48 Hz, 3H) 1.28 (d, J=6.41 Hz, 3H) 1.47-1.59 (m, 2H) 1.88-1.98 (m, 2H) 3.87 (t, J=8.85 Hz, 1H) 4.21-4.31 (m, 1H) 4.35 (dd, J=9.15, 2.75 Hz, 1H) 4.51-4.59 (m, 2H) 7.12 (d, J=8.85 Hz, 1H) 7.72 (dd, J=8.54, 2.14 Hz, 2H) 8.51 (d, J=1.83 Hz, 2H) 8.75 (s, 1H); MS (DCI/NH3) m/z 454 (M+H)+.

At the same time, in my other blogs, there are other synthetic methods of this type of compound, (S)-Propane-1,2-diol, and friends who are interested can also refer to it.

Reference£º
Patent; ABBOTT LABORATORIES; US2011/144165; (2011); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

New downstream synthetic route of (S)-Propane-1,2-diol

The chemical industry reduces the impact on the environment during synthesis, 4254-15-3,(S)-Propane-1,2-diol,I believe this compound will play a more active role in future production and life.

4254-15-3,A common heterocyclic compound, 4254-15-3,(S)-Propane-1,2-diol, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

General procedure: A 45percent solution of hydrogen bromide in acetic acid (33.0 g, 23.2 mL) was added dropwise over 10 min to 60.3 mmol optically active diol 4a-f with stirring and ice-cooling. The solution was stirred at 0 ¡ãC for 5 min, and next at room temperature for 45 min. Next, water (100 mL) was added, and the mixture was alkalized to pH 8 with solid Na2CO3. The solution was immediately extracted with ethyl ether (5 .x. 60 mL), and the combined extracts were dried over anhydrous Na2SO4. The ether was evaporated, and the product was distilled under reduced pressure or purified by silica gel column chromatography with gradient AcOEt-hexane 9:1.

The chemical industry reduces the impact on the environment during synthesis, 4254-15-3,(S)-Propane-1,2-diol,I believe this compound will play a more active role in future production and life.

Reference£º
Article; Poterala, Marcin; Plenkiewicz, Jan; Tetrahedron Asymmetry; vol. 22; 3; (2011); p. 294 – 299;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

The origin of a common compound about (S)-Propane-1,2-diol

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,(S)-Propane-1,2-diol,4254-15-3,its application will become more common.

A common heterocyclic compound, 4254-15-3,(S)-Propane-1,2-diol, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 4254-15-3

Zu einer Loesung von 1.50 g (19.7 mmol) S-1, 2-Propandiol in 15 ml Dichlormethan werden 2.75 ml (19.7 mmol) Triethylamin, 0. 10 g (0. 8 MMOL) 4-N, N-Dimethylaminopyridin und 2. 97 G (19.7 mmol) tert. -Butyldimethylsilylchlorid gegeben. Die Reaktionsmischung wird fuer 16 h bei Raumtemperatur geruehrt. Anschliessend wird mit Dichlormethan verduennt und je zweimal mit Wasser, gesaettigter Ammoniumchlorid-Loesung und gesaettigter Natriumhydrogencarbonat-Loesung gewaschen. Die organische Phase wird ueber Natriumsulfat getrocknet und im Vakuum vom Loesungsmittel befreit. Der Rueckstand wird ohne weitere Reinigung in der naechsten Stufe eingesetzt. Ausbeute : 2.55 g, 80% Reinheit (54% d. Th.) GC/MS (Methode 6) : RT = 2.62 min., M/Z = 191 (M+H)+., 4254-15-3

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,(S)-Propane-1,2-diol,4254-15-3,its application will become more common.

Reference£º
Patent; BAYER HEALTHCARE AG; WO2004/80952; (2004); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Discovery of 4254-15-3

According to the analysis of related databases, 4254-15-3, the application of this compound in the production field has become more and more popular.

Adding a certain compound to certain chemical reactions, such as: 4254-15-3,(S)-Propane-1,2-diol, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound 4254-15-3,4254-15-3

Step 1 To (S)-propane diol (4.89 g, 64.2 mmol) in DCM (20 ml_) at-20 C (CO2/ ethylene glycol bath) was added TEA (11.2 mL, 80.3 mmol) followed by p-toluenesulfonyl chloride (12.3 g, 64.3 mmol) in DCM (26 mL) dropwise over 30 minutes. Allowed the cold bath to expire while stirring for 26 h. Added DCM and washed the reaction with 1 N HCI, water, and brine. Dried (MgSO4) the organic layer, filtered, and concentrated in vacuo. The residue was purified by silica gel chromatography (0-40% EtOAc/Hex over 40 minutes) to provide the tosylate (8.37 g, 36 .4 mmol).

According to the analysis of related databases, 4254-15-3, the application of this compound in the production field has become more and more popular.

Reference£º
Patent; SCHERING CORPORATION; WO2009/5646; (2009); A2;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Extended knowledge of 4254-15-3

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, 4254-15-3.

4254-15-3,Each compound has different characteristics, and only by selecting the characteristics of the compound suitable for a specific situation can the compound be applied on a large scale. (S)-Propane-1,2-diol,4254-15-3, This compound has unique chemical properties. The synthetic route is as follows.

To separate the propylene glycol enantiomers on a chiral gas chromatography column, they were derivatized with acetic anhydride to the methyl esters. Into a small vial equipped with a Teflon lined stir bar was added 1 mL diethyl ether and equal amounts (5-10 drops) propylene glycol, pyridine, and acetic anhydride. The reaction mixture was stirred 3 hours at room temperature, washed with deionized 0 (3 x 1 mL) and dried over Na2S04. The derivatized product was then analyzed via gas chromatography. The diacetate was obtained with an ee of 97percent when (R,i?)-(Cl-salcy)CoN03 was used, and with an ee of 96percent when (5,S)-(Cl-salcy)CoN03 was used, indicating that both enantiomers produced highly regioregular poly(propylene succinate).

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, 4254-15-3.

Reference£º
Patent; CORNELL UNIVERSITY; COATES, Geoffrey; WHITEHEAD, Julie; (60 pag.)WO2016/25675; (2016); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Some scientific research about (S)-Propane-1,2-diol

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand 4254-15-3 reaction routes.

4254-15-3 A common heterocyclic compound, 4254-15-3,(S)-Propane-1,2-diol, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

Example 33 : (2R, 75R)-2-[(l-Aminoisoquinolin-6-yl)amino]-8-fluoro-7- {[(25)-l- hydroxypropan-2-yl]oxy } -4, 15,20-trimethyl- 13 -oxa-4, 1 1- diazatricyclo[14.2.2.16, 10]henicosa-l(18),6,8, 10(21), 16, 19-hexaene-3, 12-dione; trifluoroacetic acid [00356] To a solution of (s)-(+)-l,2-propanediol (2.0 g, 26.3 mmol) in DMF (5 mL) was added TBS-C1 (5.94 g, 39.4 mmol) and imidazole (2.147 g, 31.5 mmol). The reaction was stirred at 25 ¡ãC for 18 h. The reaction mixture was partitioned between ethyl acetate and sat. ammonium chloride. The organic phase was washed with sat. ammonium chloride and brine, dried (MgS04) and concentrated in vacuo. The crude product was purified by flash chromatography to give 33A (4.0 g, 80percent yield) as a colorless oil. 33B: (5)-Benzyl 2-((l-((tert-butyldimethylsilyl)oxy)propan-2-yl)oxy)-3-fluoro-5- nitrobenzyl(methyl)carbamate [00357] To a solution of 27B (400 mg, 1.197 mmol), 33A (251 mg, 1.316 mmol) and triphenylphosphine (345 mg, 1.316 mmol) in THF (10 mL) at 0 ¡ãC, was added DIAD (0.256 mL, 1.316 mmol) dropwise. The reaction mixture was allowed to slowly warm to rt and stirred for 16 h, then was concentrated. The crude product was purified by flash chromatography (0 to 40percent ethyl acetate/hexanes) to give 33B (577 mg, 1.139 mmol, 95percent yield) as colorless oil. MS (ESI) m/z: 507.1 [M+1]+. H MR (400 MHz, chloroform-d) delta ppm 7.78 – 7.94 (2 H, m) 7.27 – 7.43 (5 H, m) 5.17 (2 H, d, J=20.1 Hz) 4.46 – 4.74 (3 H, m) 3.65 – 3.81 (2 H, m) 2.97 (3 H, d, J=15.8 Hz) 1.31 (3 H, t, J=7.0 Hz) 0.81 (9 H, d, J=7.0 Hz) -0.05 – 0.04 (6 H, m) rotamers. 33C: (S)-4-((l-((tert-Butyldimethylsilyl)oxy)propan-2-yl)oxy)-3-fluoro-5- ((methylamino)methyl)aniline [00358] To a degassed solution of 33B (573 mg, 1.131 mmol) in MeOH (10 mL), was added 10percent Pd-C (50 mg, 0.047 mmol). The mixture was evacuated and flushed with H2 (3X), then was stirred under an atmosphere of H2 for 8 h. The mixture was filtered and concentrated to give 33C (382 mg, 1.115 mmol, 99percent yield) as a pale brown oil. MS (ESI) m/z: 343.1 [M+l]+. PI MR (400 MHz, chloroform-d) delta ppm 6.40 (1 H, d, J=1.8 Hz) 6.33 (1 H, dd, J=12.5, 2.8 Hz) 4.20 (1 H, sxt, J=5.7 Hz) 3.62 – 3.79 (4 H, m) 3.53 (2 H, br. s.) 2.40 (3 H, s) 1.25 (3 H, d, J=6.3 Hz) 0.89 (9 H, s) 0.05 (6 H, s). 33D: tert-Butyl N- {6-[({[(5-amino-2- { [(25)- l-[(tert-butyldimethylsilyl)oxy]propan-2- yl]oxy } -3 -fluorophenyl)methyl](methyl)carbamoyl} ( {4-[(2R)- 1 -hydroxypropan-2-yl]-3 – methylphenyl} )methyl)amino]isoquinolin- 1 -yl} -N-[(tert-butoxy)carbonyl]carbamate [00359] To Intermediate 5 (100 mg, 0.515 mmol), Intermediate 1 (185 mg, 0.515 mmol), and glyoxylic acid monohydrate (47.4 mg, 0.515 mmol), were added DMF (6.00 mL) and acetonitrile (6 mL). The mixture was stirred at 80 ¡ãC for 1 h, then was cooled to rt. To the mixture were added sequentially 33C (201 mg, 0.587 mmol), DMF (6.00 mL), TEA (0.215 mL, 1.546 mmol) and BOP (251 mg, 0.567 mmol). The reaction mixture was stirred at rt for 1 h, then was diluted with H20 and extracted with EtOAc (3X). The extract was washed with brine, dried ( a2S04) and concentrated. The crude product was purified by flash chromatography (1 to 15percent MeOH/methylene chloride) to give 33D (422 mg, 0.474 mmol, 92percent yield) as an orange foam. MS (ESI) m/z: 890.3 [M+l]+. H MR: complicated due to presence of diastereomers and amide rotamers. Example 33 [00360] To a solution of 33D (417 mg, 0.468 mmol) in dichloromethane (10 mL) and acetonitrile (5 mL) at 0 ¡ãC, was added phosgene (20percent in toluene, 0.243 mL, 0.492 mmol) dropwise. The mixture was stirred at 0 ¡ãC for 20 min, then was removed from the cooling bath and bubbled with Ar for 20 min. This mixture was added dropwise via a syringe pump into a solution of TEA (0.392 mL, 2.81 mmol) in dichloromethane (190 mL) over 5 h. The reaction mixture was allowed to stir at rt for 11 h, and then concentrated. The crude product was purified by flash chromatography (1 to 15percent MeOH/methylene chloride) to give a mixture of diastereoisomers. The diastereomers were separated by a prep chiral HPLC (R,R-Whelk-0 column 21.1 x 250 mm). The desired fractions were combined and concentrated. The residue was treated with TFA (4 mL) for 15 min. The reaction mixture was concentrated and purified by prep HPLC to give Example 33 (52.9 mg, 0.074 mmol, 31.4percent yield) white solid. MS (ESI) m/z: 602.2 [M+l]+. NMR (400 MHz, methanol-d4) delta ppm 8.05 (1 H, d, J=9.3 Hz) 7.64 (1 H, dd, J=7.8, 1.8 Hz) 7.44 (1 H, d, J=7.8 Hz) 7.31 (1 H, d, J=7.0 Hz) 7.18 – 7.23 (2 H, m) 6.91 (1 H, d, J=7.3 Hz) 6.83 (1 H, d, J=2.3 Hz) 6.53 (1 H, dd, J=12.4, 2.4 Hz) 5.73 (1 H, s) 5.66 (1 H, br. s.) 5.37 (1 H, d, J=17.1 Hz) 4.65 (1 H, t, J=11.0 Hz) 4.27 – 4.38 (1 H, m, J=5.7, 5.7, 5.7, 5.7, 5.4 Hz) 4.06 (1 H, d, J=17.3 Hz) 3.96 (1 H, dd, J=10.8, 4.3 Hz) 3.63 (2 H, d, J=4.8 Hz) 3.43 – 3.55 (1 H, m) 3.27 (3 H, s) 2.34 (3 H, s) 1.30 (3 H, d, J=7.0 Hz) 1.27 (3 H, d, J=6.3 Hz). Analytical HPLC (low pH, 254 nM): Sunfir…

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand 4254-15-3 reaction routes.

Reference£º
Patent; BRISTOL-MYERS SQUIBB COMPANY; ZHANG, Xiaojun; GLUNZ, Peter W.; PRIESTLEY, Eldon Scott; JOHNSON, James, A.; WURTZ, Nicholas, Ronald; LADZIATA, Vladimir; WO2013/184734; (2013); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Extended knowledge of (S)-Propane-1,2-diol

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, (S)-Propane-1,2-diol.

4254-15-3,Researchers who often do experiments know that organic synthesis is a process of preparing more complex target molecules from simple raw materials through one or more chemical reactions. Generally, it requires fewer steps,and cheap raw materials.4254-15-3,A new synthetic method of this compound is introduced below.

Compound I (1.5 gm, 3.8 mmol) was dissolved in MTBE (8 mL); the solution was slightly cloudy. To this was added (S)-1,2-propane diol[(S)-PG] (397 mg, 2 mL in MTBE). The reaction was stirred for five minutes; no solid was observed. Optionally, it is preferred, but not entirely necessary to add seed crystals (5 mg), at this stage, as is commonly known to one skilled in the art. Immediately cloudiness appeared and crystallization was observed. The reaction was stirred for 24 hr at room temperature, then filtered, and solid obtained was further dried in a desiccator at RT. A total of 1.10 gm complex was isolated. Mother liquor was cooled and an additional 0.5 gm complex was produced after drying. A total 1.55 gm (83percent) product was isolated.The seed crystals employed may be prepared by dissolving compound I in MTBE and treating the resulting solution with (S)-propylene glycol and proceeding as described above (without seeding) to form crystalline compound Ia.

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, (S)-Propane-1,2-diol.

Reference£º
Patent; Bristol-Myers Squibb Company; US2008/287529; (2008); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Discovery of (S)-Propane-1,2-diol

According to the analysis of related databases, 4254-15-3, the application of this compound in the production field has become more and more popular.

Adding a certain compound to certain chemical reactions, such as: 4254-15-3,(S)-Propane-1,2-diol, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound 4254-15-3,4254-15-3

Compound I (1.5 gm, 3.8 mmol) was dissolved in MTBE (8 mL); the solution was slightly cloudy. To this was added (S)-1,2-propane diol[(S)-PG] (397 mg, 2 mL in MTBE). The reaction was stirred for five minutes; no solid was observed. Optionally, it is preferred, but not entirely necessary to add seed crystals (5 mg), at this stage, as is commonly known to one skilled in the art. Immediately cloudiness appeared and crystallization was observed. The reaction was stirred for 24 hr at room temperature, then filtered, and solid obtained was further dried in a desiccator at RT. A total of 1.10 gm complex was isolated. Mother liquor was cooled and an additional 0.5 gm complex was produced after drying. A total 1.55 gm (83percent) product was isolated.The seed crystals employed may be prepared by dissolving compound I in MTBE and treating the resulting solution with (S)-propylene glycol and proceeding as described above (without seeding) to form crystalline compound Ia.

According to the analysis of related databases, 4254-15-3, the application of this compound in the production field has become more and more popular.

Reference£º
Patent; Bristol-Myers Squibb Company; US2008/287529; (2008); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate