A new synthetic route of (S)-Propane-1,2-diol

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,4254-15-3,(S)-Propane-1,2-diol,its application will become more common.

A common heterocyclic compound, 4254-15-3,(S)-Propane-1,2-diol, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 4254-15-3

Compound I (1.5 gm, 3.8 mmol) was dissolved in MTBE (8 mL); the solution was slightly cloudy. To this was added (S)-1,2-propane diol[(S)-PG] (397 mg, 2 mL in MTBE). The reaction was stirred for five minutes; no solid was observed. Optionally, it is preferred, but not entirely necessary to add seed crystals (5 mg), at this stage, as is commonly known to one skilled in the art. Immediately cloudiness appeared and crystallization was observed. The reaction was stirred for 24 hr at room temperature, then filtered, and solid obtained was further dried in a desiccator at RT. A total of 1.10 gm complex was isolated. Mother liquor was cooled and an additional 0.5 gm complex was produced after drying. A total 1.55 gm (83percent) product was isolated.The seed crystals employed may be prepared by dissolving compound I in MTBE and treating the resulting solution with (S)-propylene glycol and proceeding as described above (without seeding) to form crystalline compound Ia.

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,4254-15-3,(S)-Propane-1,2-diol,its application will become more common.

Reference£º
Patent; Bristol-Myers Squibb Company; US2008/287529; (2008); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

The origin of a common compound about 4254-15-3

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,4254-15-3,(S)-Propane-1,2-diol,its application will become more common.

A common heterocyclic compound, 4254-15-3,(S)-Propane-1,2-diol, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 4254-15-3

To a solution of (S)-1,2-propanediol (20.0 g, 0.263 mol), triethylamine (31.9 g, 0.315 mol), 4-dimethylaminopyridine (1.28 g, 10.5 mmol) in CH2Cl2 (200 mL) was added tert-butyldimethylsiloxy chloride (47.3 g, 0.315 mol) at 22 C. The mixture was allowed to stir for 18 h. The mixture was diluted with CH2Cl2, washed with water and sat. aqueous NH4Cl. The organic solution was dried over Na2SO4, filtered and concentrated under reduced pressure. Silica gel chromatography (5% ethyl acetate/hexanes) of the concentrate gave 45.0 g of the title compound as a clear oil in 90% yield.

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,4254-15-3,(S)-Propane-1,2-diol,its application will become more common.

Reference£º
Patent; Bristol-Myers Squibb Company; Merck & Co. Inc.; US6967196; (2005); B1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

The origin of a common compound about 4254-15-3

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,4254-15-3,(S)-Propane-1,2-diol,its application will become more common.

A common heterocyclic compound, 4254-15-3,(S)-Propane-1,2-diol, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 4254-15-3

To a stirred solution of (A)-propane-l,2-diol (5 g, 65.7 mmol) in anhydrous DCM (40 mL) at 0 C, was added imidazole (4.47 g, 65.7 mmol), followed by TBDMS-C1 (10.89 g, 72.3 mmol). After being stirred at room temperature for 4 h, the reaction mixture was cooled to 0C, and partitioned between sodium bicarbonate solution (50 ml) and DCM (200 mL). The organic layer was washed with EhO, and saturated NaCl solution, dried over anhydrous Na2S04, filtered and concentrated under reduced pressure fV)- l -((/tW-butyl dimethyl si lyl)oxy)propan-2-ol ^2 g, 63.0 mmol, 96% ) as colourless oil. NMR (400 MHz, chloroform-^ d ppm 3.73 – 3.88 (m, 1H), 3.51 – 3.65 (m, 1H), 3.29 – 3.46 (m, 1H), 2.36 – 2.56 (m, 1H), 1.12 (d, J=6.53 Hz, 3H), 0.90 – 0.96 (m, 9H), 0.06 – 0.13 (m, 6H).

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,4254-15-3,(S)-Propane-1,2-diol,its application will become more common.

Reference£º
Patent; BRISTOL-MYERS SQUIBB COMPANY; BALOG, James Aaron; SEITZ, Steven P.; WILLIAMS, David K.; ANDAPPAN MURUGAIAH SUBBAIAH, Murugaiah; (191 pag.)WO2019/136112; (2019); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

The origin of a common compound about 4254-15-3

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,4254-15-3,(S)-Propane-1,2-diol,its application will become more common.

A common heterocyclic compound, 4254-15-3,(S)-Propane-1,2-diol, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 4254-15-3

Step 1 To (S)-propane diol (4.89 g, 64.2 mmol) in DCM (20 ml_) at-20 C (CO2/ ethylene glycol bath) was added TEA (11.2 mL, 80.3 mmol) followed by p-toluenesulfonyl chloride (12.3 g, 64.3 mmol) in DCM (26 mL) dropwise over 30 minutes. Allowed the cold bath to expire while stirring for 26 h. Added DCM and washed the reaction with 1 N HCI, water, and brine. Dried (MgSO4) the organic layer, filtered, and concentrated in vacuo. The residue was purified by silica gel chromatography (0-40% EtOAc/Hex over 40 minutes) to provide the tosylate (8.37 g, 36 .4 mmol).

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,4254-15-3,(S)-Propane-1,2-diol,its application will become more common.

Reference£º
Patent; SCHERING CORPORATION; WO2009/5646; (2009); A2;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Some scientific research about (S)-Propane-1,2-diol

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,4254-15-3,(S)-Propane-1,2-diol,its application will become more common.

4254-15-3 A common heterocyclic compound, 4254-15-3,(S)-Propane-1,2-diol, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

The four (4) step reaction sequence starting from 103-1 and 103-2 (prepared as shown from S-(+)-1,2-propanediol (103-0)) provided Boc-T103a in a very good overall yield of 85%. The alternatively protected analogue Ddz-T103a was prepared using the same procedure with an overall yield of 55% [1.4 g Ddz(2RMe)opy18 was obtained starting from 1 g (5.8 mmol) of 103-1]. Synthesis of the Boc-T103b stereoisomer proceeds similarly, but starting from R-(-)-1,2-propanediol.TLC: Rf: 0.3 (100% EtOAc)

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,4254-15-3,(S)-Propane-1,2-diol,its application will become more common.

Reference£º
Patent; Tranzyme Pharma Inc.; US2008/194672; (2008); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

The origin of a common compound about 4254-15-3

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,4254-15-3,(S)-Propane-1,2-diol,its application will become more common.

A common heterocyclic compound, 4254-15-3,(S)-Propane-1,2-diol, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 4254-15-3

To a stirred solution of 68 (S)-2-propanediol (1.00g, 13.14mmol) in 14 dichloromethane/69 pyridine (10:10 V/V) at -25C under argon was added dropwise 70 p-toluenesulfonyl chloride (2.51g, 13.14mmol) dissolved in 10mL of CH2Cl2 over a period of 2h. The mixture was stirred at -25C for 4h and then at room temperature for further 2h. After the reaction was completed, 30mL of CH2Cl2 were added and the mixture was shaken successively with ice-cold water, 1M 10mL 71 aqueous HCl, 15mL 72 water, saturated NaHCO3, and water, respectively. The organic phase was dried over MgSO4 and filtered and the solvent was removed under reduced pressure. The residue was purified by chromatography over silica gel using toluene/EtOAc (5/1) to give 73 product (1.70g, 56%) as white crystals. M.p: 33-35C, [alpha]D25=-12.05 (c 1, CHCl3). 1H NMR (CDCI3, ppm): delta 7.80 (d, 2H, J=8.0Hz, of OTs), 7.36 (d, 2H, J=8.0Hz, of OTs), 3.97-4.05 (m, 2H, -CHCH3-+CH2OTs (a)), 3.83-3.88 (m, 1H, CH2OTs (b)), 2.45 (s, 3H, -CH3 of OTs), 2.39 (s, 1H, OH), 1.15 (d, J=6.4Hz, 3H, -CHCH3), assignment was based on the 1H-13C HETCOR and 1H-1H COSY spectra, 4254-15-3

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,4254-15-3,(S)-Propane-1,2-diol,its application will become more common.

Reference£º
Article; Meric, Nermin; Kayan, Cezmi; Guerbuez, Nevin; Karakaplan, Mehmet; Binbay, Nil Ertekin; Aydemir, Murat; Tetrahedron Asymmetry; vol. 28; 12; (2017); p. 1739 – 1749;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

The important role of (S)-Propane-1,2-diol

With the complex challenges of chemical substances, we look forward to future research findings about (S)-Propane-1,2-diol

Name is (S)-Propane-1,2-diol, as a common heterocyclic compound, it belongs to chiral-oxygen-ligands compound, and cas is 4254-15-3, its synthesis route is as follows.,4254-15-3

General procedure: A 45percent solution of hydrogen bromide in acetic acid (33.0 g, 23.2 mL) was added dropwise over 10 min to 60.3 mmol optically active diol 4a-f with stirring and ice-cooling. The solution was stirred at 0 ¡ãC for 5 min, and next at room temperature for 45 min. Next, water (100 mL) was added, and the mixture was alkalized to pH 8 with solid Na2CO3. The solution was immediately extracted with ethyl ether (5 .x. 60 mL), and the combined extracts were dried over anhydrous Na2SO4. The ether was evaporated, and the product was distilled under reduced pressure or purified by silica gel column chromatography with gradient AcOEt-hexane 9:1.

With the complex challenges of chemical substances, we look forward to future research findings about (S)-Propane-1,2-diol

Reference£º
Article; Poterala, Marcin; Plenkiewicz, Jan; Tetrahedron Asymmetry; vol. 22; 3; (2011); p. 294 – 299;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

The important role of 4254-15-3

With the complex challenges of chemical substances, we look forward to future research findings about (S)-Propane-1,2-diol

Name is (S)-Propane-1,2-diol, as a common heterocyclic compound, it belongs to chiral-oxygen-ligands compound, and cas is 4254-15-3, its synthesis route is as follows.,4254-15-3

(S)-(+)-1,2-propanediol (2.506 g, 32.9 mmol) and 4-methylbenzene-1-sulfonyl chloride (6.91 g, 36.2 mmol) in dichloromethane (DCM) (80 mL) Medium solution,Triethylamine (6.89 mL, 49.4 mmol),Subsequently 4-dimethylaminopyridine (0.201 g, 1.647 mmol) was added.The reaction was stirred at room temperature for 16 hours.The reaction was quenched with saturated aqueous ammonium chloride (20 mL) and the layers were separated.Extract the aqueous portion with DCM (2 ¡Á 20 mL),The combined organic layers were washed with saturated aqueous sodium bicarbonate (20 mL) and brine (20 mL).The organic portion is dried over MgSO4, filtered,Concentrate under reduced pressure to give a residue that isPurification by silica gel chromatography eluting with 10-100% ethyl acetate: heptane gave the product (4.56 g, 60% yield).

With the complex challenges of chemical substances, we look forward to future research findings about (S)-Propane-1,2-diol

Reference£º
Patent; Abbvie Incorporated; Argiriadi, Maria A.; Breinlinger, Eric C.; Chien, Ellen Yulin Tsai; Cowart, Marlon D.; Frank, Kristine E.; Friedman, Michael M.; Hardy, David J.; Herold, J. Martin; Liu, Huaqing; Chu, Wei; Scanio, Marc J.; Schrimpf, Michael R.; Vargo, Thomas R.; Van Epps, Stacy A.; Webster, Matthew P.; Little, Andrew J.; Dunstan, Teresa A.; Katcher, Matthew H.; Schedler, David A.; (232 pag.)JP6557436; (2019); B1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

The important role of 4254-15-3

With the complex challenges of chemical substances, we look forward to future research findings about (S)-Propane-1,2-diol

Name is (S)-Propane-1,2-diol, as a common heterocyclic compound, it belongs to chiral-oxygen-ligands compound, and cas is 4254-15-3, its synthesis route is as follows.,4254-15-3

Compound I (1.5 gm, 3.8 mmol) was dissolved in MTBE (8 mL); the solution was slightly cloudy. To this was added (S)-1,2-propane diol[(S)-PG] (397 mg, 2 mL in MTBE). The reaction was stirred for five minutes; no solid was observed. Optionally, it is preferred, but not entirely necessary to add seed crystals (5 mg), at this stage, as is commonly known to one skilled in the art. Immediately cloudiness appeared and crystallization was observed. The reaction was stirred for 24 hr at room temperature, then filtered, and solid obtained was further dried in a desiccator at RT. A total of 1.10 gm complex was isolated. Mother liquor was cooled and an additional 0.5 gm complex was produced after drying. A total 1.55 gm (83percent) product was isolated.The seed crystals employed may be prepared by dissolving compound I in MTBE and treating the resulting solution with (S)-propylene glycol and proceeding as described above (without seeding) to form crystalline compound Ia.

With the complex challenges of chemical substances, we look forward to future research findings about (S)-Propane-1,2-diol

Reference£º
Patent; Bristol-Myers Squibb Company; US2008/287529; (2008); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Some tips on (S)-Propane-1,2-diol

With the complex challenges of chemical substances, we look forward to future research findings about 4254-15-3,belong chiral-oxygen-ligands compound

As a common heterocyclic compound, it belongs to chiral-oxygen-ligands compound, name is (S)-Propane-1,2-diol, and cas is 4254-15-3, its synthesis route is as follows.,4254-15-3

The four (4) step reaction sequence starting from 103-1 and 103-2 (prepared as shown from S-(+)-1,2-propanediol (103-0)) provided Boc-T103a in a very good overall yield of 85%. The alternatively protected analogue Ddz-T103a was prepared using the same procedure with an overall yield of 55% [1.4 g Ddz(2RMe)opy18 was obtained starting from 1 g (5.8 mmol) of 103-1]. Synthesis of the Boc-T103b stereoisomer proceeds similarly, but starting from R-(-)-1,2-propanediol.TLC: Rf: 0.3 (100% EtOAc)

With the complex challenges of chemical substances, we look forward to future research findings about 4254-15-3,belong chiral-oxygen-ligands compound

Reference£º
Patent; Tranzyme Pharma Inc.; US2008/194672; (2008); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate