The important role of 538-58-9

With the complex challenges of chemical substances, we look forward to future research findings about 1,5-Diphenylpenta-1,4-dien-3-one

Name is 1,5-Diphenylpenta-1,4-dien-3-one, as a common heterocyclic compound, it belongs to chiral-oxygen-ligands compound, and cas is 538-58-9, its synthesis route is as follows.,538-58-9

General procedure: In a general procedure, dibenzylidene acetone (1 mmol), N,N-dimethylbarbituric acid/barbituric acid/thiobarbituric acid(1 mmol) and 4 mL of ethanol:water (1:1) were taken in a 50 mL round-bottomed flask. 10 mol% of tetrabutyl ammonium bromide (TBAB) was added to the mixture, and the contents were stirred. The reaction mixture was refluxed and the progress of the reaction was monitored by TLC using ethyl acetate:petroleum ether (30:70) as eluent for disappearance of active methylene compounds. After completion of the reaction, the reaction mixture was allowed to cool to room temperature and diluted with water (5 mL). The solid obtained was filtered at pump and washed with water:ethanol (2:1). The product was recrystallized with ethanol. The products were characterized by their spectral data.

With the complex challenges of chemical substances, we look forward to future research findings about 1,5-Diphenylpenta-1,4-dien-3-one

Reference£º
Article; Aggarwal, Komal; Khurana, Jitender M.; Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy; vol. 143; (2015); p. 288 – 297;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Introduction of a new synthetic route about 1,5-Diphenylpenta-1,4-dien-3-one

With the rapid development of chemical substances, we look forward to future research findings about 538-58-9

1,5-Diphenylpenta-1,4-dien-3-one, cas is 538-58-9, it is a common heterocyclic compound, the chiral-oxygen-ligands compound, its synthesis route is as follows.

General procedure: To a stirred solution of indole 1a (59 mg, 0.5 mmol) and chalcone 2a (115 mg, 0.55 mmol) in MeCN (2.0mL) was added a solution of Br2 (0.00077 mL) in MeCN (0.5 mL), and the mixture was stirred for 7.0 h at 50 C. After 1a was consumed, as indicated by TLC, the reaction mixture was quenched with saturated aqueous Na2S2O3 (0.2mL) and water (10.0 mL), and extracted with CH2Cl2 three times. The residue obtained after evaporation of the solvent was purified by column chromatography on silica gel (petroleum ether-ethyl acetate = 30:1, v/v) to afford adduct 3a as a white solid (151 mg, 93% yield).

With the rapid development of chemical substances, we look forward to future research findings about 538-58-9

Reference£º
Article; Liang, Deqiang; Li, Xiangguang; Zhang, Wanshun; Li, Yanni; Zhang, Mi; Cheng, Ping; Tetrahedron Letters; vol. 57; 9; (2016); p. 1027 – 1030;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Application of 3-Piperazinobenzisothiazole hydrochloride

As the rapid development of chemical substances, we look forward to future research findings about 538-58-9

The chiral-oxygen-ligands compound, cas is 538-58-9 name is 1,5-Diphenylpenta-1,4-dien-3-one, mainly used in chemical industry, its synthesis route is as follows.

Bis(dibenzylideneacetone)palladium(0) (Pd(dba)2)was synthesized by reducing PdCl2 with methanol in thepresence of sodium acetate and dba [30]. Dibenzylideneacetone(3.4500 g, 1.472 ¡Á 10-2 mol), sodium acetatetrihydrate (4.8525 g, 3.568 ¡Á 10-2 mol), and methanol(113 mL) were placed in a two-neck round-bottomflask. The reaction mixture was stirred at 50C for 45-60 min to obtain a solution, and PdCl2 (0.7875 g,4.434 ¡Á 10-3 mol) was added. The resulting solutionwas stirred in an argon atmosphere at 40C for 4 h.This yielded a dark violet precipitate of the Pd(dba)2complex, which was collected on a fritted glass filterunder argon, washed with water and acetone, andvacuum-dried (30C/2-3 Torr) for 3 h. The productyield was 2.4 g. (94% of the theoretical yield); m =152C. According to the literature, m of thePd(dba)2 complex is 152C [31]. UV spectra:Pd(dba)2, 525 nm (d ? d* transition, epsilon525 =6400 L mol-1 cm-1); non-coordinated dba, 325 nm(n ? pi* transition, epsilon325 = 33540 L mol-1 cm-1).

As the rapid development of chemical substances, we look forward to future research findings about 538-58-9

Reference£º
Article; Skripov; Belykh; Sterenchuk; Akimov; Tauson; Schmidt; Kinetics and Catalysis; vol. 58; 1; (2017); p. 34 – 45; Kinet. Katal.; vol. 58; 1; (2017); p. 36 – 48,13;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Extracurricular laboratory: Synthetic route of 538-58-9

As the rapid development of chemical substances, we look forward to future research findings about 538-58-9

1,5-Diphenylpenta-1,4-dien-3-one, cas is 538-58-9, it is a common heterocyclic compound, the chiral-oxygen-ligands compound, its synthesis route is as follows.

General procedure: A mixture of malononitrile (2a) (66 mg, 1 mmol), dibenzylideneacetone (6a) (234 mg, 1 mmol), tributylphosphine (25 mL, 0.1 mmol), and anhydrous CH2Cl2 (5.0 mL) was magnetically stirred in a flask under nitrogen atmosphere at room temperature. The reaction progress was monitored by thin layer chromatography (TLC) until the starting materials were completely consumed. Then, the reaction mixture was diluted with H2O (10 mL) and extracted with Et2O (3×10 mL), the organic phase was washed with brine (10 mL), dried over anhydrous Na2SO4. After the removal of the solvent under reduced pressure, the residue was subjected to chromatography on a silica gel (200-300 mesh) column using petroleum ether/ethyl acetate (4:1) as eluent to afford 7a (286 mg, 95% yield) as a light yellow solid (mp 170-171 C).

As the rapid development of chemical substances, we look forward to future research findings about 538-58-9

Reference£º
Article; Xu, Da-Zhen; Zhan, Ming-Zhe; Huang, You; Tetrahedron; vol. 70; 2; (2014); p. 176 – 180;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Share a compound : 538-58-9

With the rapid development of chemical substances, we look forward to future research findings about 1,5-Diphenylpenta-1,4-dien-3-one

1,5-Diphenylpenta-1,4-dien-3-one, cas is 538-58-9, it is a common heterocyclic compound, the chiral-oxygen-ligands compound, its synthesis route is as follows.

General procedure: A mixture of malononitrile (2a) (66 mg, 1 mmol), dibenzylideneacetone (6a) (234 mg, 1 mmol), tributylphosphine (25 mL, 0.1 mmol), and anhydrous CH2Cl2 (5.0 mL) was magnetically stirred in a flask under nitrogen atmosphere at room temperature. The reaction progress was monitored by thin layer chromatography (TLC) until the starting materials were completely consumed. Then, the reaction mixture was diluted with H2O (10 mL) and extracted with Et2O (3×10 mL), the organic phase was washed with brine (10 mL), dried over anhydrous Na2SO4. After the removal of the solvent under reduced pressure, the residue was subjected to chromatography on a silica gel (200-300 mesh) column using petroleum ether/ethyl acetate (4:1) as eluent to afford 7a (286 mg, 95% yield) as a light yellow solid (mp 170-171 C).

With the rapid development of chemical substances, we look forward to future research findings about 1,5-Diphenylpenta-1,4-dien-3-one

Reference£º
Article; Xu, Da-Zhen; Zhan, Ming-Zhe; Huang, You; Tetrahedron; vol. 70; 2; (2014); p. 176 – 180;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Share a compound : 538-58-9

With the rapid development of chemical substances, we look forward to future research findings about 1,5-Diphenylpenta-1,4-dien-3-one

1,5-Diphenylpenta-1,4-dien-3-one, cas is 538-58-9, it is a common heterocyclic compound, the chiral-oxygen-ligands compound, its synthesis route is as follows.

General procedure: In a general procedure, dibenzylidene acetone (1 mmol), N,N-dimethylbarbituric acid/barbituric acid/thiobarbituric acid(1 mmol) and 4 mL of ethanol:water (1:1) were taken in a 50 mL round-bottomed flask. 10 mol% of tetrabutyl ammonium bromide (TBAB) was added to the mixture, and the contents were stirred. The reaction mixture was refluxed and the progress of the reaction was monitored by TLC using ethyl acetate:petroleum ether (30:70) as eluent for disappearance of active methylene compounds. After completion of the reaction, the reaction mixture was allowed to cool to room temperature and diluted with water (5 mL). The solid obtained was filtered at pump and washed with water:ethanol (2:1). The product was recrystallized with ethanol. The products were characterized by their spectral data.

With the rapid development of chemical substances, we look forward to future research findings about 1,5-Diphenylpenta-1,4-dien-3-one

Reference£º
Article; Aggarwal, Komal; Khurana, Jitender M.; Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy; vol. 143; (2015); p. 288 – 297;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Share a compound : 538-58-9

With the rapid development of chemical substances, we look forward to future research findings about 1,5-Diphenylpenta-1,4-dien-3-one

1,5-Diphenylpenta-1,4-dien-3-one, cas is 538-58-9, it is a common heterocyclic compound, the chiral-oxygen-ligands compound, its synthesis route is as follows.

General procedure: General procedure (GP): Dienones 2a-m (0.25 mmol) and diamide 1a or 1b (74 mg, 0.25 mmol)were dissolved in 10 mL of dry CH2Cl2 in a 25 mL round bottom flask. DBU (3 eq, 114 mg, 0.75 mmol)was added to the reaction, which was subsequently stirred for 2-3 h. After the reaction was completedas determined by TLC, the crude material was subjected to column chromatography using ethylacetate/n-hexane (2:3) to give the desired compounds 3a-m.

With the rapid development of chemical substances, we look forward to future research findings about 1,5-Diphenylpenta-1,4-dien-3-one

Reference£º
Article; Al-Majid, Abdullah Mohammed; Islam, Mohammad Shahidul; Atef, Saleh; El-Senduny, Fardous F.; Badria, Farid A.; Elshaier, Yaseen A. M. M.; Ali; Barakat, Assem; Motiur Rahman; Molecules; vol. 24; 7; (2019);,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

New learning discoveries about 538-58-9

With the rapid development of chemical substances, we look forward to future research findings about 1,5-Diphenylpenta-1,4-dien-3-one

1,5-Diphenylpenta-1,4-dien-3-one, cas is 538-58-9, it is a common heterocyclic compound, the chiral-oxygen-ligands compound, its synthesis route is as follows.

.) Synthesis According to Inorganic Synthesis, 28, 110 (1990)The synthesis is carried out under inert gas. 2.096 g (11.73 mmol) PdCl2 and 0.686 g (11.73 mmol) NaCl are provided under argon, and 59 ml of methanol are added.Next the reaction mixtures is stirred over night for 18 hours in the sealed flask. Then the dark red-brown solution is filtered through a G3 frit under argon. No residue is evident on the frit.The filtrate solution is transferred to a 500 ml three-necked flask using 293 ml of methanol, and heated to 60 C. At this temperature, 8.563 g (36.54 mmol) dibenzylidene acetone are added under argon. Then, the addition of 17.595 g (214.49 mmol) sodium acetate is made.A voluminous, reddish solid precipitates. Subsequently, the reaction mixture is cooled to room temperature. The product is removed by filtration and washed with 300 ml of methanol, 300 ml of water, and 300 ml of acetone. The product is dried in vacuo at room temperature.Appearance: dark-brown solidSolubility Test:1.00 g of the product are dissolved in 150 ml of chloroform and stirred at room temperature for 30 minutes. The solution is then aspirated through a membrane filter. The filter is washed with 30 ml of water and 30 ml of acetone and subsequently dried over night at 45 C. in vacuo. The residue accounts for 1.4%.Result:m(product): 6.4 gYield with respect to Pd: 94CHCl3-insoluble ingredients: 1.4

With the rapid development of chemical substances, we look forward to future research findings about 1,5-Diphenylpenta-1,4-dien-3-one

Reference£º
Patent; W.C. Heraeus GmbH; US7999126; (2011); B2;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Some tips on 538-58-9

As the paragraph descriping shows that 538-58-9 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.538-58-9,1,5-Diphenylpenta-1,4-dien-3-one,as a common compound, the synthetic route is as follows.

General procedure: A mixture of divinyl ketone (0.5 mmol), indolin-2-one (0.6 mmol)and cesium carbonate (0.5 mmol) in methylene chloride (5 mL) wasstirred at room temperature for the appropriate time. Then the resultingmixture was extracted with ethyl acetate (2 ¡Á 5 mL). The combinedorganic layers were dried over anhydrous magnesium sulfate andconcentrated under reduced pressure. The residues were isolated bycolumn chromatography using petroleum ether and ethyl acetate (v/v5 : 1) as eluent to give the pure product.2,6-Diphenylspiro[cyclohexane-1,3?-indoline]-2?,4-dione (2a): Whitesolid; m.p. 216-218 C; 1H NMR (600 MHz, CDCl3): delta 8.70 (s, 1H),7.23-7.20 (m, 3H), 7.00-6.95 (m, 6H), 6.90 (d, J = 7.3 Hz, 2H), 6.72 (t,J = 7.6 Hz, 1H), 6.56 (d, J = 7.7 Hz, 1H), 6.21 (d, J = 7.6 Hz, 1H), 3.96(t, J = 14.3 Hz, 1H), 3.80 (dd, J = 14.0, 3.7 Hz, 1H), 3.69 (t, J = 6.0 Hz,1H), 3.62 (dd, J = 16.1, 6.0 Hz, 1H), 2.99 (dd, J = 16.1, 5.9 Hz, 1H),2.72 (dd, J = 15.8, 3.4 Hz, 1H); 13C NMR (150 MHz, CDCl3): delta 211.4,180.9, 140.2, 139.9, 138.0, 130.0, 129.3, 128.2, 128.1, 128.0, 127.9,127.4, 127.2, 125.9, 121.4, 109.3, 56.0, 46.6, 45.5, 42.7, 41.9; Anal.calcd for C25H21NO2: C, 81.72; H, 5.76; N, 3.81; found: C, 81.66; H,5.78; N, 3.80%.

As the paragraph descriping shows that 538-58-9 is playing an increasingly important role.

Reference£º
Article; Li, Zheng; Li, Jiasheng; Yang, Jingya; Journal of Chemical Research; vol. 41; 3; (2017); p. 168 – 171;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

New learning discoveries about 538-58-9

The synthetic route of 538-58-9 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.538-58-9,1,5-Diphenylpenta-1,4-dien-3-one,as a common compound, the synthetic route is as follows.

General procedure: In a general procedure, dibenzylidene acetone (1 mmol), N,N-dimethylbarbituric acid/barbituric acid/thiobarbituric acid(1 mmol) and 4 mL of ethanol:water (1:1) were taken in a 50 mL round-bottomed flask. 10 mol% of tetrabutyl ammonium bromide (TBAB) was added to the mixture, and the contents were stirred. The reaction mixture was refluxed and the progress of the reaction was monitored by TLC using ethyl acetate:petroleum ether (30:70) as eluent for disappearance of active methylene compounds. After completion of the reaction, the reaction mixture was allowed to cool to room temperature and diluted with water (5 mL). The solid obtained was filtered at pump and washed with water:ethanol (2:1). The product was recrystallized with ethanol. The products were characterized by their spectral data.

The synthetic route of 538-58-9 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Aggarwal, Komal; Khurana, Jitender M.; Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy; vol. 143; (2015); p. 288 – 297;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate