Simple exploration of 616-43-3

If you want to learn more about this compound(3-Methyl-1H-pyrrole)Category: chiral-oxygen-ligands, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(616-43-3).

Most of the natural products isolated at present are heterocyclic compounds, so heterocyclic compounds occupy an important position in the research of organic chemistry. A compound: 616-43-3, is researched, SMILESS is CC1=CNC=C1, Molecular C5H7NJournal, Chemistry of Materials called Steric and Electronic Effects in Methyl-Substituted 2,2′-Bipyrroles and Poly(2,2′-Bipyrrole)s: Part II. Theoretical Investigation on Monomers, Author is Gatti, Carlo; Frigerio, Giovanni; Benincori, Tiziana; Brenna, Elisabetta; Sannicolo, Franco; Zotti, Gianni; Zecchin, Sandro; Schiavon, Gilberto, the main research direction is pyrrole bipyrrole substituted steric electronic effect.Category: chiral-oxygen-ligands.

The effects of N- and Cβ-Me substitution in pyrrole and 2,2′-bipyrrole were investigated through ab initio calculations and Atoms in Mols. anal. of the resulting wave functions. Replacement of a hydrogen atom with a Me group in pyrroles lowers the ionization potential, with substitution at C3 being more efficient than N-substitution because of the larger release of π population to the ring in the former case. Full geometry optimization at RHF/6-31G** level and as a function of the torsion angle τ between two adjacent rings demonstrates that the increasing loss of planarity in the 2,2′-bipyrrole, N,N’-dimethyl-2,2′-bipyrrole, and 3,3′-dimethyl-2,2′-bipyrrole series, adversely affects the pos. contributions expected from Me substitution. An intramol. interaction energy model shows that the greater anti-planarization energy of N,N’-dimethyl-2,2′-bipyrrole, as compared to 3,3′-dimethyl-2,2′-bipyrrole, is due to the larger decrease in the stabilizing electrostatic term and to the larger increase in the destabilizing nonbonding contribution which occurs at τ = 0° in the former. Calculations on the corresponding monocations and anal. of new conductivity measures on substituted poly(2,2′-bipyrrole)s suggest that the ease in achieving local chain planarity in doped polypyrroles should be more closely correlated to the anti-planarization energies of the charged monomers rather than to anti-planarization energies of the neutral monomers.

If you want to learn more about this compound(3-Methyl-1H-pyrrole)Category: chiral-oxygen-ligands, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(616-43-3).

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Flexible application of in synthetic route 616-43-3

There is still a lot of research devoted to this compound(SMILES:CC1=CNC=C1)Reference of 3-Methyl-1H-pyrrole, and with the development of science, more effects of this compound(616-43-3) can be discovered.

Reference of 3-Methyl-1H-pyrrole. The mechanism of aromatic electrophilic substitution of aromatic heterocycles is consistent with that of benzene. Compound: 3-Methyl-1H-pyrrole, is researched, Molecular C5H7N, CAS is 616-43-3, about β-Electrophilic Additions of Pentaammineosmium(II) η2-Pyrrole Complexes. Author is Hodges, L. Mark; Gonzalez, Javier; Koontz, Jason I.; Myers, William H.; Harman, W. Dean.

The reactivity of pyrrole complexes [Os(NH3)5(4,5-η2-L)]2+(OTf)2 (L = pyrrole and alkylated pyrroles, e.g., I, R = H, Me) is surveyed with various electrophiles. The pyrrole ligand undergoes alkylation or acylation with a wide variety of electrophiles (e.g., acids, alkyl triflates, anhydrides, aldehydes, ketones, and Michael acceptors) predominately at the β-position. Depending on reaction conditions, the resulting products are either β-substituted 1H-pyrrole or 3H-pyrrolium complexes, the latter of which resist rearomatization due to the electron-donating properties of the metal. In all cases observed, the initial addition of the electrophile occurs on the ring face anti to Os coordination. The Os(II)-4,5-η2-pyrrole complexes are each in dynamic equilibrium with a minor isomer where the metal binds across C(3) and C(4). In this form, the uncoordinated portion of the pyrrole ring resembles an azomethine ylide, which can undergo a 1,3-dipolar cycloaddition reaction with certain electrophiles. The resulting 7-azanorbornene complexes may be ring-opened with Lewis acids to generate α-substituted 2H-pyrrolium complexes. As with the 3H-pyrrolium species, the 2H-pyrrolium complexes are stabilized by metal coordination and thereby resist rearomatization. The selectivity between Michael addition and dipolar cycloaddition depends on the pyrrole, electrophile, solvent, temperature, the presence of Lewis acids, and in some cases, concentration The iminium C of both 2H- and 3H-pyrrolium tautomers is considerably less electrophilic than its organic analogs, but readily undergoes borohydride reduction to form complexes of 3- and 2-pyrrolines, resp. When pyrrole complexes are combined with alkyne Michael acceptors, the intermediate enolate can be trapped by the iminium C of the 3H-pyrrolium species in DMSO to form a metalated cyclobutene derivative, e.g., II (R1 = COMe, R2 = H; R1 = CO2Me). Decomplexation of most pyrrole and 3-pyrroline derivatives can be accomplished in good yield either by heating or by oxidation of the metal (CeIV or DDQ). Complexes of 2-pyrrolines are considerably more difficult to remove from the metal; however, quaternization or acylation of the nitrogen facilitates their decomplexation.

There is still a lot of research devoted to this compound(SMILES:CC1=CNC=C1)Reference of 3-Methyl-1H-pyrrole, and with the development of science, more effects of this compound(616-43-3) can be discovered.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Decrypt The Mystery Of 616-43-3

There is still a lot of research devoted to this compound(SMILES:CC1=CNC=C1)Synthetic Route of C5H7N, and with the development of science, more effects of this compound(616-43-3) can be discovered.

Synthetic Route of C5H7N. The protonation of heteroatoms in aromatic heterocycles can be divided into two categories: lone pairs of electrons are in the aromatic ring conjugated system; and lone pairs of electrons do not participate. Compound: 3-Methyl-1H-pyrrole, is researched, Molecular C5H7N, CAS is 616-43-3, about Molecular characterization of the organic fraction of suspended matter in the surface waters and bottom nepheloid layer of the Rhone Delta using analytical pyrolysis. Author is Sicre, M. A.; Peulve, S.; Saliot, A.; de Leeuw, J. W.; Baas, M..

Curie Point-pyrolysis-gas chromatog. (CuPy-GC) and Curie Point-pyrolysis-gas chromatog.-mass spectrometry (CuPy-GC-MS) were applied to characterize the macromol. content of the suspended particles in the surface waters and benthic nepheloid layer of the Rhone Delta. The chromatogram of the pyrolyzate of the Rhone River particles revealed a low pyrolysis yield from the riverine material in which polysaccharides and lipid-derived substances prevailed. The absence of levoglucosan and other pyrolysis products related to cellulose suggested that no intact polysaccharides were present. Lignin-derived products were virtually absent. In the salinity gradient, a wide variety of products, including saturated and monounsaturated acids, phytadienes, n-alkylnitriles and pyrolysis products from proteins were determined, indicating a major contribution from freshly produced autochthonous material. A suite of dipeptides of bacterial origin was also identified. Lignin-derived products from terrigenous sources were minor. Further offshore qual. differences, with respect to the previous samples were apparent. Polysaccharides were less pronounced, possibly due to the dilution of the suspended load of the waters, and/or the microbial consumption of these readily degradable compounds In contrast, the relative abundances of autochthonously derived compounds increased as a result of nutrient inputs from the Rhone River which fertilize coastal waters. The occurrence of 1,1,3,3,5,5, hexamethylcyclotrioxane as well s styrene provided indications of anthropogenic inputs to the site. The macromol. constituents of suspended solids in the benthic nepheloid layer strikingly resembled those of the riverine material. Polysaccharides together with phytadienes and C14, C16 and C18 acids accounted for the major pyrolysis products. The persistence of this fingerprint in the benthic layer was observed from the mouth to stations ZD1 and ZA7. Beyond this point, due to the influence of the Liguro-Provencal current flowing westwards, the composition of the pyrolyzates changed towards a marine signature. Flocculation of suspended matter in which polysaccharides would make particles stick together or salt flocculation were proposed as an alternative scenario to explain the formation of the nepheloid layer.

There is still a lot of research devoted to this compound(SMILES:CC1=CNC=C1)Synthetic Route of C5H7N, and with the development of science, more effects of this compound(616-43-3) can be discovered.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Extended knowledge of 616-43-3

There is still a lot of research devoted to this compound(SMILES:CC1=CNC=C1)Name: 3-Methyl-1H-pyrrole, and with the development of science, more effects of this compound(616-43-3) can be discovered.

Most of the compounds have physiologically active properties, and their biological properties are often attributed to the heteroatoms contained in their molecules, and most of these heteroatoms also appear in cyclic structures. A Journal, Proceedings of the National Institute of Sciences of India called Shifts in wave number of electronic transitions due to substitution-for furan, pyrrole, and thiophene, Author is Santhamma, V., which mentions a compound: 616-43-3, SMILESS is CC1=CNC=C1, Molecular C5H7N, Name: 3-Methyl-1H-pyrrole.

The transitions, Φ3 → Φ4 and Φ3 → Φ5, were calculated for Me and F substitution on furan, pyrrole, and thiophene. The method used to calculate the shifts is outlined. An effective comparison of the calculated shifts with observed values is not possible due to paucity of exptl. data.

There is still a lot of research devoted to this compound(SMILES:CC1=CNC=C1)Name: 3-Methyl-1H-pyrrole, and with the development of science, more effects of this compound(616-43-3) can be discovered.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Fun Route: New Discovery of 616-43-3

There is still a lot of research devoted to this compound(SMILES:CC1=CNC=C1)Computed Properties of C5H7N, and with the development of science, more effects of this compound(616-43-3) can be discovered.

The chemical properties of alicyclic heterocycles are similar to those of the corresponding chain compounds. Compound: 3-Methyl-1H-pyrrole, is researched, Molecular C5H7N, CAS is 616-43-3, about β-Electrophilic Additions of Pentaammineosmium(II) η2-Pyrrole Complexes, the main research direction is pyrrole osmium electrophilic addition; alkylation pyrrole osmium complex electrophile; acylation pyrrole osmium complex electrophile; cycloaddition dipolar pyrrole osmium complex; Michael addition dipolar pyrrole osmium complex; ring cleavage azanorbornene osmium complex.Computed Properties of C5H7N.

The reactivity of pyrrole complexes [Os(NH3)5(4,5-η2-L)]2+(OTf)2 (L = pyrrole and alkylated pyrroles, e.g., I, R = H, Me) is surveyed with various electrophiles. The pyrrole ligand undergoes alkylation or acylation with a wide variety of electrophiles (e.g., acids, alkyl triflates, anhydrides, aldehydes, ketones, and Michael acceptors) predominately at the β-position. Depending on reaction conditions, the resulting products are either β-substituted 1H-pyrrole or 3H-pyrrolium complexes, the latter of which resist rearomatization due to the electron-donating properties of the metal. In all cases observed, the initial addition of the electrophile occurs on the ring face anti to Os coordination. The Os(II)-4,5-η2-pyrrole complexes are each in dynamic equilibrium with a minor isomer where the metal binds across C(3) and C(4). In this form, the uncoordinated portion of the pyrrole ring resembles an azomethine ylide, which can undergo a 1,3-dipolar cycloaddition reaction with certain electrophiles. The resulting 7-azanorbornene complexes may be ring-opened with Lewis acids to generate α-substituted 2H-pyrrolium complexes. As with the 3H-pyrrolium species, the 2H-pyrrolium complexes are stabilized by metal coordination and thereby resist rearomatization. The selectivity between Michael addition and dipolar cycloaddition depends on the pyrrole, electrophile, solvent, temperature, the presence of Lewis acids, and in some cases, concentration The iminium C of both 2H- and 3H-pyrrolium tautomers is considerably less electrophilic than its organic analogs, but readily undergoes borohydride reduction to form complexes of 3- and 2-pyrrolines, resp. When pyrrole complexes are combined with alkyne Michael acceptors, the intermediate enolate can be trapped by the iminium C of the 3H-pyrrolium species in DMSO to form a metalated cyclobutene derivative, e.g., II (R1 = COMe, R2 = H; R1 = CO2Me). Decomplexation of most pyrrole and 3-pyrroline derivatives can be accomplished in good yield either by heating or by oxidation of the metal (CeIV or DDQ). Complexes of 2-pyrrolines are considerably more difficult to remove from the metal; however, quaternization or acylation of the nitrogen facilitates their decomplexation.

There is still a lot of research devoted to this compound(SMILES:CC1=CNC=C1)Computed Properties of C5H7N, and with the development of science, more effects of this compound(616-43-3) can be discovered.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

A new application about 616-43-3

There is still a lot of research devoted to this compound(SMILES:CC1=CNC=C1)HPLC of Formula: 616-43-3, and with the development of science, more effects of this compound(616-43-3) can be discovered.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《New synthesis of serotonin》. Authors are Noland, Wayland E.; Hovden, Robert A..The article about the compound:3-Methyl-1H-pyrrolecas:616-43-3,SMILESS:CC1=CNC=C1).HPLC of Formula: 616-43-3. Through the article, more information about this compound (cas:616-43-3) is conveyed.

Dropwise addition of a molar excess of nitroethylene to molten 5-benzyloxyindole at steam bath temperature 1.83 hrs. gave 3-(2-nitroethyl)-5-benzyloxyindole (I), m. 93.5-5.0° (CH2Cl2-ligroine), in 45% yield. Use of excess nitroethylene is desirable since unreacted 5-benzyloxyindole (36%) and 64% I form a eutectic mixture, m. 81-1.5°. Similar reactions of 5-benzyloxyindole with equimolar portions of β-nitrostyrene 6 hrs. and β-methyl-β-nitrostyrene for 22 hrs. gave 72 and 37% yields, resp., of 3-(1-phenyl-2-nitroethyl)-5-benzyloxyindole (II), platelets, m. 117-18° (alc.), and 3-(1-phenyl-2-nitropropyl)-5-benzyloxyindole (III), m. 152-2.5° (alc.). Hydrogenation at 2 atm. over PtO2 of I-III gave in high yields the corresponding tryptamines, isolated as the picrates. I gave 84% yield as reddish orange crystals, m. 231.5-2.0° (decomposition). III gave 94% yield, red crystals, m. 176-6.5° (alc.) and III gave 62% yield, red crystals, m. 213-15°. The tryptamine from I was characterized as the hydrochloride, m. 245-7° (decomposition). Hydrogenation of I at 2 atm. over 10% Pd-C resulted in concomitant reduction of the NO2 group and debenzylation to give 69% serotonin (IV) as the creatinine sulfate hydrate, m. 212-14°. This new synthesis of IV from 5-benzyloxyindole appeared to be higher in over-all yield than most reported methods. It was also simpler than previously described methods.

There is still a lot of research devoted to this compound(SMILES:CC1=CNC=C1)HPLC of Formula: 616-43-3, and with the development of science, more effects of this compound(616-43-3) can be discovered.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Share an extended knowledge of a compound : 616-43-3

There is still a lot of research devoted to this compound(SMILES:CC1=CNC=C1)SDS of cas: 616-43-3, and with the development of science, more effects of this compound(616-43-3) can be discovered.

The three-dimensional configuration of the ester heterocycle is basically the same as that of the carbocycle. Compound: 3-Methyl-1H-pyrrole(SMILESS: CC1=CNC=C1,cas:616-43-3) is researched.SDS of cas: 3235-67-4. The article 《On the mechanism of the sensitized photooxygenation of pyrroles》 in relation to this compound, is published in Journal of the American Chemical Society. Let’s take a look at the latest research on this compound (cas:616-43-3).

The mechanism of dye-sensitized photooxygenation reaction of pyrrole, its N-methyl, 2-methyl, 3-methyl, and N-phenyl derivatives as well as kryptopyrrole, was studied at low temperatures via 1H-NMR spectral data and H218O in various solvents. Endo-peroxide intermediates (I) undergo rapid ground-state reactions, leading to 5-hydroxy-Δ3- pyrrolinones by two mechanisms: internal rearrangement and reaction with water.

There is still a lot of research devoted to this compound(SMILES:CC1=CNC=C1)SDS of cas: 616-43-3, and with the development of science, more effects of this compound(616-43-3) can be discovered.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Extracurricular laboratory: Synthetic route of 616-43-3

There is still a lot of research devoted to this compound(SMILES:CC1=CNC=C1)Name: 3-Methyl-1H-pyrrole, and with the development of science, more effects of this compound(616-43-3) can be discovered.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《The protonation of pyrroles》. Authors are Chiang, Y.; Whipple, E. B..The article about the compound:3-Methyl-1H-pyrrolecas:616-43-3,SMILESS:CC1=CNC=C1).Name: 3-Methyl-1H-pyrrole. Through the article, more information about this compound (cas:616-43-3) is conveyed.

Formation of stable α-protonated salts of pyrrole and methylpyrroles in aqueous H2SO4 is demonstrated by their proton magnetic resonance spectra. The observed rates of deuterium exchange in N-methylpyrrole require, however, that β-protonation of the base occur at the faster rate in concentrated H2SO4 solutions The basicity constant of pyrrole is redetermined as pKa = -3.8, considerably below the currently accepted value, and the variation of the ratio of protonated to unprotonated base with H2SO4 concentrations, while self-consistent within the methylpyrrole series, differs from previously defined class acidity functions. The basicity constants vary with Me substitution in a semi-empirically predictable manner.

There is still a lot of research devoted to this compound(SMILES:CC1=CNC=C1)Name: 3-Methyl-1H-pyrrole, and with the development of science, more effects of this compound(616-43-3) can be discovered.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Some scientific research tips on 616-43-3

Here is a brief introduction to this compound(616-43-3)Product Details of 616-43-3, if you want to know about other compounds related to this compound(616-43-3), you can read my other articles.

Product Details of 616-43-3. So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic. Compound: 3-Methyl-1H-pyrrole, is researched, Molecular C5H7N, CAS is 616-43-3, about The radiation chemistry of some simple pyrroles.

Pyrrole, monomethylpyrroles, and 2,5-dimethylpyrrole were γ-irradiated. Gaseous, liquid and residual products were determined The products indicate that several types of reactions occur including ring rupture, cleavage of bonds external to the pyrrole ring, ring substitution, and intramol. rearrangement. A brief comparison is made among radiolysis, photolysis, mass spectral ionization, and pyrolysis reactions of pyrrole compounds

Here is a brief introduction to this compound(616-43-3)Product Details of 616-43-3, if you want to know about other compounds related to this compound(616-43-3), you can read my other articles.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Simple exploration of 616-43-3

Here is a brief introduction to this compound(616-43-3)Recommanded Product: 3-Methyl-1H-pyrrole, if you want to know about other compounds related to this compound(616-43-3), you can read my other articles.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Practical synthesis of thieno[3,2-b]pyrrole》. Authors are Matteson, Donald S.; Snyder, H. S..The article about the compound:3-Methyl-1H-pyrrolecas:616-43-3,SMILESS:CC1=CNC=C1).Recommanded Product: 3-Methyl-1H-pyrrole. Through the article, more information about this compound (cas:616-43-3) is conveyed.

cf. C.A. 51, 16422a. KCNS(200 g.) in 250 ml. MeOH at -75° (Dry Ice-Me2CO bath) stirred with dropwise addition of 159.6 g. Br in 125 ml. MeOH at -75° and the mixture kept below -60°, the thiocyanogen solution cooled to -75° and treated rapidly with 67.1 g. redistilled pyrrole in 250 ml. MeOH at -75° and the mixture stirred (with cooling bath removed) until the temperature rose to -25°, poured onto 2 kg. crushed ice and stirred with 300 g. NaCl, filtered through a 5-6-in. Buchner funnel and the ice and solids washed freely with H2O, the crude 3-thiocyanopyrrole (I) dried in vacuo and clarified in 100 ml. CH2Cl2 and 500 ml. methylcyclohexane (MgSO4 and Darco) at 40°, the colorless solution chilled and seeded, kept 17 hrs. at 0°, and chilled to -20° gave 62 g. I, m. 40-4°, infrared spectrum identical with that of I prepared from Cu(CNS)2 and pyrrole. I stains the skin deep red and may cause burning or itching sensations. The use of rubber gloves is mandatory and contacted areas should be washed immediately with soap and H2O and treated with 3% H2O2. Pyrrole (0.71 g.) in 75 ml. MeOH stirred at 0-5° (N atm.) with portionwise addition of 0.2 mole Cu(CNS)2 [on basis of (NCS)2 analysis] in a few min. and stirring continued 50 min. at 0-5°, the mixture filtered and the CuCNS washed with 50 ml. MeOH, the filtrate and washings poured onto 300 g. crushed ice and 100 g. NaCl added, the mixture filtered and the solids extracted with 225 ml. methylcyclohexane, the solution treated with Darco and cooled, seeded, and kept 17 hrs. at 0° gave 5.83 g. I, m. 41.5-43° (methylcyclohexane). As a route to 3-(alkylthio)pyrroles, attempts to isolate 3-mercaptopyrrole (II), 3-RSC4H4N (R = H) (IIa), were made but abandoned when a more promising way was found. Mg (1.87 g.) in 125 ml. MeOH (N atm.) at -20° kept 1 hr. with 6.2 g. I and the mixture poured into 500 ml. H2O, 200 ml. Et2O, and sufficient solid CO2 to dissolve the precipitated Mg(OH)2, the aqueous phase extracted with Et2O and the dried Et2O solutions evaporated in vacuo, the residue sublimed at 75°/0.1 mm. and the product (6.8 g.) recrystallized from PhMe, resublimed, recrystallized from dilute MeOH, and resublimed at 55-65°/0.1 mm. gave S-3-pyrrolyl O-Me thioimidocarbonate, II [R = C(:NH)OMe], m. 77-80°. I(6.21 g.) and 8.5 g. MeI in 50 ml. MeOH at -20° (N atm.) stirred with dropwise addition in 10 min. of 7.9 g. 85% KOH in 20 ml. H2O and 20 ml. MeOH and stirring continued 1.5 hrs. without cooling, the excess alkali neutralized with solid CO2 and the mixture poured into 500 ml. H2O containing 100 g. NaCl, the mixture extracted 3 times with 50 ml. CH2Cl2 and the dried solution (K2CO3) evaporated in vacuo, the residue distilled, and the product (5.1 g.) redistilled gave II (R = Me) (IIb), b12-13 88-9°. The excellent (90%) yield of IIb showed that the extremely unstable anion of IIa exists long enough to displace halide ions from a moderately active alkyl halide. I (62.1 g.) and 83.5 g. BrCH2CO2H in 500 ml. MeOH at -50° stirred rapidly with addition of 123 g. 85% KOH in 500 ml. 50% dilute MeOH in 10 min. and stirring continued 2 hrs. without cooling, the mixture brought to pH 8 with solid CO2 and the solvent evaporated in vacuo (warm H2O bath to avoid bumping), the solid residue taken up in 500 ml. CH2Cl2 and the mixture stirred with controlled addition of 375 ml. ice-cold 4N HCl, the aqueous phase extracted twice with 250 ml. CH2Cl2 and the combined dried CH2Cl2 solutions treated with Darco and filtered, the filtrate saturated with excess dry NH3, and filtered gave 78 g. II (R = CH2CO2NH4) (IIc), m. 127-33°, purified by treatment of IIc with N HCl and extraction with CH2Cl2, dehydration over MgSO4, and crystallization by treatment with anhydrous NH3 to give IIc, m. 125-33°; Ca salt-2H2O, m. 112-20° (decomposition). IIc in MeOH refluxed 20 hrs. with ZnCl2 and the product purified by extraction followed by distillation in a sublimation apparatus at 80°/0.1 mm. gave the liquid ester II (R = CH2CO2Me). BrCH2CH(OEt)2 failed to react with I under the above conditions and active alkyl halides such as PhCOCH2Br, BrCH2CO2Et, and ClCH2COCO2H appeared to be attacked by OH- more rapidly than was I and also failed to give sulfides. IIc (17.42 g.) and 250 ml. CH2Cl2 shaken with 30 ml. ice-cold 6N HCl and the aqueous phase extracted twice with 250 ml. CH2Cl2, the combined CH2Cl2 extracts dried (MgSO4) and treated with Darco, filtered and the filtrates combined with the 150 ml. CH2Cl2 washings of the Mg2SO4, the CH2Cl2 solution added dropwise in 50 min. to the most vigorously agitated region of 400 g. well-stirred polyphosphoric acid at 120-3° with free vaporization of the CH2Cl2, the mixture cooled below 100° and added slowly with stirring to 1200 ml. H2O and 750 ml. EtOAc, the stirring continued 30 min. and the aqueous layer extracted with 250 ml. EtOAc, the aqueous layer saturated with 300 g. NaCl and extracted twice with 250 ml. EtOAc, the emulsion layer neutralized with Na2CO3 and warmed on a steam bath prior to a 3-fold extraction with 100 ml. portions of EtOAc, the combined EtOAc solutions washed with aqueous NaHCO3 and dried over MgSO4, evaporated in vacuo, and the residue sublimed twice at 120°/0.1 mm. gave 5.0 g. product, m. 183-8.5°, purified by sublimation twice, recrystallization twice from aqueous HCONMe2 and sublimation twice, treatment with Darco, and recrystallization from MeOH to give 2H,3H-thieno[3,2-b]pyrrol-3-one (III), m. 187-90°, λ 330, 303 (min.), 279, 236 (min.) mμ (ε 7400, 3900, 16,000, 500, 95% alc.), ν 3140, 1635 cm.-1 (Nujol). III (0.28 g.) in 35 ml. 95% alc. refluxed 1 hr. with 2.5 g. Raney Ni (W6) and the solution filtered, the residue washed with alc. and the alc. solutions evaporated in vacuo, the residue sublimed, and the product (0.06 g.) recrystallized from H2O gave 23 mg. 2-acetylpyrrole, m. 89-91°, identical with that prepared from C4H4NMgBr and AcCl. III (1.39 g.) and 1.5 g. NaBH4 in 50 ml. MeOH refluxed 16 hrs. under N and the mixture poured into 200 ml. 15% aqueous NaCl, extracted 3 times with 50 ml. CH2Cl2 and the dried extract evaporated, the residue sublimed at 6070°/0.1 mm., and the 0.76 g. product recrystallized from Et2O-C5H12 at -70° and resublimed 3 times gave thieno[3,2-b]pyrrole, m. 25-8°, λ 260, 233 (min.) mμ (ε 11,800, 4900, 95% alc.), infrared spectrum and that of a less pure sample synthesized from thiophene (cf. Snyder, et al., C.A. 51, 13846b) given.

Here is a brief introduction to this compound(616-43-3)Recommanded Product: 3-Methyl-1H-pyrrole, if you want to know about other compounds related to this compound(616-43-3), you can read my other articles.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate