Downstream Synthetic Route Of 3685-23-2

When you point to this article, it is believed that you are also very interested in this compound(3685-23-2)Application of 3685-23-2 and due to space limitations, I can only present the most important information.

Application of 3685-23-2. Aromatic heterocyclic compounds can also be classified according to the number of heteroatoms contained in the heterocycle: single heteroatom, two heteroatoms, three heteroatoms and four heteroatoms. Compound: cis-4-Aminocyclohexane carboxylic acid, is researched, Molecular C7H13NO2, CAS is 3685-23-2, about Synthesis of di- and tripeptides containing 4-aminocyclohexanecarboxylic acid. Author is Chen, Wen-Yih; Olsen, Richard K..

Amino acid derivatives were coupled to cis- and trans-4-aminocyclohexanecarboxylic acid with diethylphosphoryl cyanide as coupling reagent. Treatment of trans-I (R = Me3CO2C, R1 = OH) with diethylphosphoryl cyanide, followed by condensation with L-valine Me ester gave trans I (R = Me3CO2C, R1 = Val-OMe) (II). Deprotection and coupling of II with N-tert-butoxycarbonyl-L-alanine gave trans-I (R = Me3CO2C-Ala-, R1 = Val-OMe). Similar transformations were effected with cis-I (R = Me3CO2C, R1 = OH). Other coupling procedures investigated were the carbodiimide, p-nitrophenyl active ester, and sym. anhydride methods, which were less satisfactory for coupling to cyclohexane amino acids.

When you point to this article, it is believed that you are also very interested in this compound(3685-23-2)Application of 3685-23-2 and due to space limitations, I can only present the most important information.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

A new synthetic route of 3685-23-2

When you point to this article, it is believed that you are also very interested in this compound(3685-23-2)Computed Properties of C7H13NO2 and due to space limitations, I can only present the most important information.

Computed Properties of C7H13NO2. So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic. Compound: cis-4-Aminocyclohexane carboxylic acid, is researched, Molecular C7H13NO2, CAS is 3685-23-2, about Synthesis of di- and tripeptides containing 4-aminocyclohexanecarboxylic acid.

Amino acid derivatives were coupled to cis- and trans-4-aminocyclohexanecarboxylic acid with diethylphosphoryl cyanide as coupling reagent. Treatment of trans-I (R = Me3CO2C, R1 = OH) with diethylphosphoryl cyanide, followed by condensation with L-valine Me ester gave trans I (R = Me3CO2C, R1 = Val-OMe) (II). Deprotection and coupling of II with N-tert-butoxycarbonyl-L-alanine gave trans-I (R = Me3CO2C-Ala-, R1 = Val-OMe). Similar transformations were effected with cis-I (R = Me3CO2C, R1 = OH). Other coupling procedures investigated were the carbodiimide, p-nitrophenyl active ester, and sym. anhydride methods, which were less satisfactory for coupling to cyclohexane amino acids.

When you point to this article, it is believed that you are also very interested in this compound(3685-23-2)Computed Properties of C7H13NO2 and due to space limitations, I can only present the most important information.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Simple exploration of 616-43-3

When you point to this article, it is believed that you are also very interested in this compound(616-43-3)Electric Literature of C5H7N and due to space limitations, I can only present the most important information.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Practical synthesis of thieno[3,2-b]pyrrole》. Authors are Matteson, Donald S.; Snyder, H. S..The article about the compound:3-Methyl-1H-pyrrolecas:616-43-3,SMILESS:CC1=CNC=C1).Electric Literature of C5H7N. Through the article, more information about this compound (cas:616-43-3) is conveyed.

cf. C.A. 51, 16422a. KCNS(200 g.) in 250 ml. MeOH at -75° (Dry Ice-Me2CO bath) stirred with dropwise addition of 159.6 g. Br in 125 ml. MeOH at -75° and the mixture kept below -60°, the thiocyanogen solution cooled to -75° and treated rapidly with 67.1 g. redistilled pyrrole in 250 ml. MeOH at -75° and the mixture stirred (with cooling bath removed) until the temperature rose to -25°, poured onto 2 kg. crushed ice and stirred with 300 g. NaCl, filtered through a 5-6-in. Buchner funnel and the ice and solids washed freely with H2O, the crude 3-thiocyanopyrrole (I) dried in vacuo and clarified in 100 ml. CH2Cl2 and 500 ml. methylcyclohexane (MgSO4 and Darco) at 40°, the colorless solution chilled and seeded, kept 17 hrs. at 0°, and chilled to -20° gave 62 g. I, m. 40-4°, infrared spectrum identical with that of I prepared from Cu(CNS)2 and pyrrole. I stains the skin deep red and may cause burning or itching sensations. The use of rubber gloves is mandatory and contacted areas should be washed immediately with soap and H2O and treated with 3% H2O2. Pyrrole (0.71 g.) in 75 ml. MeOH stirred at 0-5° (N atm.) with portionwise addition of 0.2 mole Cu(CNS)2 [on basis of (NCS)2 analysis] in a few min. and stirring continued 50 min. at 0-5°, the mixture filtered and the CuCNS washed with 50 ml. MeOH, the filtrate and washings poured onto 300 g. crushed ice and 100 g. NaCl added, the mixture filtered and the solids extracted with 225 ml. methylcyclohexane, the solution treated with Darco and cooled, seeded, and kept 17 hrs. at 0° gave 5.83 g. I, m. 41.5-43° (methylcyclohexane). As a route to 3-(alkylthio)pyrroles, attempts to isolate 3-mercaptopyrrole (II), 3-RSC4H4N (R = H) (IIa), were made but abandoned when a more promising way was found. Mg (1.87 g.) in 125 ml. MeOH (N atm.) at -20° kept 1 hr. with 6.2 g. I and the mixture poured into 500 ml. H2O, 200 ml. Et2O, and sufficient solid CO2 to dissolve the precipitated Mg(OH)2, the aqueous phase extracted with Et2O and the dried Et2O solutions evaporated in vacuo, the residue sublimed at 75°/0.1 mm. and the product (6.8 g.) recrystallized from PhMe, resublimed, recrystallized from dilute MeOH, and resublimed at 55-65°/0.1 mm. gave S-3-pyrrolyl O-Me thioimidocarbonate, II [R = C(:NH)OMe], m. 77-80°. I(6.21 g.) and 8.5 g. MeI in 50 ml. MeOH at -20° (N atm.) stirred with dropwise addition in 10 min. of 7.9 g. 85% KOH in 20 ml. H2O and 20 ml. MeOH and stirring continued 1.5 hrs. without cooling, the excess alkali neutralized with solid CO2 and the mixture poured into 500 ml. H2O containing 100 g. NaCl, the mixture extracted 3 times with 50 ml. CH2Cl2 and the dried solution (K2CO3) evaporated in vacuo, the residue distilled, and the product (5.1 g.) redistilled gave II (R = Me) (IIb), b12-13 88-9°. The excellent (90%) yield of IIb showed that the extremely unstable anion of IIa exists long enough to displace halide ions from a moderately active alkyl halide. I (62.1 g.) and 83.5 g. BrCH2CO2H in 500 ml. MeOH at -50° stirred rapidly with addition of 123 g. 85% KOH in 500 ml. 50% dilute MeOH in 10 min. and stirring continued 2 hrs. without cooling, the mixture brought to pH 8 with solid CO2 and the solvent evaporated in vacuo (warm H2O bath to avoid bumping), the solid residue taken up in 500 ml. CH2Cl2 and the mixture stirred with controlled addition of 375 ml. ice-cold 4N HCl, the aqueous phase extracted twice with 250 ml. CH2Cl2 and the combined dried CH2Cl2 solutions treated with Darco and filtered, the filtrate saturated with excess dry NH3, and filtered gave 78 g. II (R = CH2CO2NH4) (IIc), m. 127-33°, purified by treatment of IIc with N HCl and extraction with CH2Cl2, dehydration over MgSO4, and crystallization by treatment with anhydrous NH3 to give IIc, m. 125-33°; Ca salt-2H2O, m. 112-20° (decomposition). IIc in MeOH refluxed 20 hrs. with ZnCl2 and the product purified by extraction followed by distillation in a sublimation apparatus at 80°/0.1 mm. gave the liquid ester II (R = CH2CO2Me). BrCH2CH(OEt)2 failed to react with I under the above conditions and active alkyl halides such as PhCOCH2Br, BrCH2CO2Et, and ClCH2COCO2H appeared to be attacked by OH- more rapidly than was I and also failed to give sulfides. IIc (17.42 g.) and 250 ml. CH2Cl2 shaken with 30 ml. ice-cold 6N HCl and the aqueous phase extracted twice with 250 ml. CH2Cl2, the combined CH2Cl2 extracts dried (MgSO4) and treated with Darco, filtered and the filtrates combined with the 150 ml. CH2Cl2 washings of the Mg2SO4, the CH2Cl2 solution added dropwise in 50 min. to the most vigorously agitated region of 400 g. well-stirred polyphosphoric acid at 120-3° with free vaporization of the CH2Cl2, the mixture cooled below 100° and added slowly with stirring to 1200 ml. H2O and 750 ml. EtOAc, the stirring continued 30 min. and the aqueous layer extracted with 250 ml. EtOAc, the aqueous layer saturated with 300 g. NaCl and extracted twice with 250 ml. EtOAc, the emulsion layer neutralized with Na2CO3 and warmed on a steam bath prior to a 3-fold extraction with 100 ml. portions of EtOAc, the combined EtOAc solutions washed with aqueous NaHCO3 and dried over MgSO4, evaporated in vacuo, and the residue sublimed twice at 120°/0.1 mm. gave 5.0 g. product, m. 183-8.5°, purified by sublimation twice, recrystallization twice from aqueous HCONMe2 and sublimation twice, treatment with Darco, and recrystallization from MeOH to give 2H,3H-thieno[3,2-b]pyrrol-3-one (III), m. 187-90°, λ 330, 303 (min.), 279, 236 (min.) mμ (ε 7400, 3900, 16,000, 500, 95% alc.), ν 3140, 1635 cm.-1 (Nujol). III (0.28 g.) in 35 ml. 95% alc. refluxed 1 hr. with 2.5 g. Raney Ni (W6) and the solution filtered, the residue washed with alc. and the alc. solutions evaporated in vacuo, the residue sublimed, and the product (0.06 g.) recrystallized from H2O gave 23 mg. 2-acetylpyrrole, m. 89-91°, identical with that prepared from C4H4NMgBr and AcCl. III (1.39 g.) and 1.5 g. NaBH4 in 50 ml. MeOH refluxed 16 hrs. under N and the mixture poured into 200 ml. 15% aqueous NaCl, extracted 3 times with 50 ml. CH2Cl2 and the dried extract evaporated, the residue sublimed at 6070°/0.1 mm., and the 0.76 g. product recrystallized from Et2O-C5H12 at -70° and resublimed 3 times gave thieno[3,2-b]pyrrole, m. 25-8°, λ 260, 233 (min.) mμ (ε 11,800, 4900, 95% alc.), infrared spectrum and that of a less pure sample synthesized from thiophene (cf. Snyder, et al., C.A. 51, 13846b) given.

When you point to this article, it is believed that you are also very interested in this compound(616-43-3)Electric Literature of C5H7N and due to space limitations, I can only present the most important information.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Brief introduction of 3685-23-2

In some applications, this compound(3685-23-2)Reference of cis-4-Aminocyclohexane carboxylic acid is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Zhang, Liyuan; Yu, Runzhong; Yu, Yingbo published the article 《Analysis of metabolites and metabolic mechanism in Bt transgenic and non-transgenic maize》. Keywords: metabolite metabolic mechanism Bt transgenic maize.They researched the compound: cis-4-Aminocyclohexane carboxylic acid( cas:3685-23-2 ).Reference of cis-4-Aminocyclohexane carboxylic acid. Aromatic heterocyclic compounds can be divided into two categories: single heterocyclic and fused heterocyclic. In addition, there is a lot of other information about this compound (cas:3685-23-2) here.

The gas chromatog.-mass spectrometry was used to isolate and identify metabolites of non-transgenic and Bacillus thuringiensis transgenic maize. The non-targeted metabolomics technique was used to anal. the metabolic pathway and mechanism of two kinds of maize. The methanol was used as extractant and the N,O-bis(trimethylsilyl) trifluoroacetamide was used as derivatization reagent. 38 kinds of metabolites were isolated and identified from non-transgenic maize, and 61 kinds of metabolites were isolated and identified in Bacillus thuringiensis transgenic maize. The specific metabolites between non-transgenic and Bacillus thuringiensis transgenic maize were analyzed. The metabolic pathway of specific metabolites was analyzed by KEGG annotation. The metabolic mechanism of non-transgenic maize and Bacillus thuringiensis transgenic maize was explored. The result indicated there were more metabolites involved in metabolic pathways in Bacillus thuringiensis transgenic maize than in non-transgenic maize, and tricarboxylic acid cycle and energy metabolism pathways of Bacillus thuringiensis transgenic maize are found to be higher than that of non-transgenic maize. The metabolic pathway of Bacillus thuringiensis transgenic maize conforms to the biol. activity law.

In some applications, this compound(3685-23-2)Reference of cis-4-Aminocyclohexane carboxylic acid is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Application of 3685-23-2

As far as I know, this compound(3685-23-2)Computed Properties of C7H13NO2 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Most of the natural products isolated at present are heterocyclic compounds, so heterocyclic compounds occupy an important position in the research of organic chemistry. A compound: 3685-23-2, is researched, SMILESS is N[C@H]1CC[C@H](CC1)C(O)=O, Molecular C7H13NO2Journal, Article, Research Support, U.S. Gov’t, Non-P.H.S., Brain Research called Effects of some conformationally restricted GABA analogs on GABA membrane binding and nerve ending transport, Author is Hitzemann, Robert J.; Loh, Horace H., the main research direction is GABA transport brain; receptor GABA brain membrane.Computed Properties of C7H13NO2.

By using a series of aminocyclopentane- and aminocyclohexanecarboxylic acids, as well as some naturally occurring amino acids, it was possible to determine some aspects of the spatial topog. of the GABA [56-12-2] membrane binding and transport sites in the rat brain. The Na-independent GABA binding site had a different spatial topog. than the Na-dependent binding site in that (±)-trans-3-aminocyclopentanecarboxylic acid (I) [19297-28-0] was 7-fold more potent than (±)-cis-3-aminocyclopentanecarboxylic acid (II) [49805-32-5] in inhibiting Na-independent binding, but only 1.6 times more potent in inhibiting Na-dependent binding. The nerve ending GABA transport site was similar to the Na-dependent GABA binding site in that it accommodated both I and II. However, the transport site differed from the binding site in that II was a potent inhibitor of transport but a weak inhibitor of binding. In addition to the differences in spatial characteristics, differences in the subcellular distribution of Na-independent and Na-dependent binding sites were observed The former were found primarily in the nerve ending-mitochondrial fraction, whereas the latter were primarily found in the microsomal fraction.

As far as I know, this compound(3685-23-2)Computed Properties of C7H13NO2 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Application of 616-43-3

When you point to this article, it is believed that you are also very interested in this compound(616-43-3)Quality Control of 3-Methyl-1H-pyrrole and due to space limitations, I can only present the most important information.

Most of the compounds have physiologically active properties, and their biological properties are often attributed to the heteroatoms contained in their molecules, and most of these heteroatoms also appear in cyclic structures. A Journal, Soil Biology & Biochemistry called Management induced organic matter differentiation in grassland and arable soil: a study using pyrolysis techniques, Author is Nierop, Klaas G. J.; Pulleman, Mirjam M.; Marinissen, Joke C. Y., which mentions a compound: 616-43-3, SMILESS is CC1=CNC=C1, Molecular C5H7N, Quality Control of 3-Methyl-1H-pyrrole.

Differences in agricultural management and land use lead to differences in soil structure, soil organic matter (SOM) dynamics and composition We investigated the SOM composition at 3 depth layers in a permanent pasture (PP), an organic arable (OA) and a conventional arable (CA) field within one soil series in marine loam deposits in The Netherlands. Both arable fields were in the grass phase of the rotation. The chem. composition of SOM was determined by a combination of conventional pyrolysis-gas chromatog./mass spectrometry (Py-GC/MS) and of thermally-assisted hydrolysis and methylation (THM) with tetramethylammonium hydroxide (TMAH). In PP, SOM was composed of relatively little decomposed, mainly grass-derived material comprising polysaccharides, lignin, aliphatic compounds (extractable lipids, cutin, suberin) and proteins. With depth, plant-derived constituents decreased, whereas microbial and humified material predominated. Both arable soils contained mainly strongly humified plant material and microbially altered proteineous material that showed heterocyclic N-compounds together with alkylbenzenes and phenols upon pyrolysis. With THM, small traces of plant-derived alkanols and cutin/suberin were observed in the arable soils. The upper layers of OA contained little lignin, which can only be derived from the grass vegetation or manure inputs since last plowing (2 yr before), since it was not found in the whole plow layer. Overall SOM composition is therefore hardly affected by organic farming compared to conventional management. The differences in SOM content and composition between the pasture and arable fields can be ascribed to differences in input and depth distribution of fresh organic materials. A difference in phys. protection of easily mineralizable SOM between pasture and arable soils is also likely to contribute.

When you point to this article, it is believed that you are also very interested in this compound(616-43-3)Quality Control of 3-Methyl-1H-pyrrole and due to space limitations, I can only present the most important information.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Some scientific research about 3685-23-2

When you point to this article, it is believed that you are also very interested in this compound(3685-23-2)Recommanded Product: cis-4-Aminocyclohexane carboxylic acid and due to space limitations, I can only present the most important information.

The chemical properties of alicyclic heterocycles are similar to those of the corresponding chain compounds. Compound: cis-4-Aminocyclohexane carboxylic acid, is researched, Molecular C7H13NO2, CAS is 3685-23-2, about Synthesis and antitumor activity of nonsymmetric phosphoric acid triamides, the main research direction is phosphoric acid triamide nonsym preparation acute toxicity antitumor activity; amide phosphoric acid nonsym preparation acute toxicity antitumor activity.Recommanded Product: cis-4-Aminocyclohexane carboxylic acid.

R1R2P(O)NHR3 (R1, R2 independently = aziridino, N(CH2CH2Cl)2, NMe2, morpholino or NHCH2CH2OH; R3 = 4-R-substituted cyclohexyl (R = H, cis- and trans-CO2H, cis- and trans-CO2Et)) were prepared and tested for acute toxicity and antitumor activity. All the 12 tested compounds possess a lower antitumor activity as compared to that of the reference drug thiophosphamide. The antitumor activity of nonsym. phosphoric acid triamides is determined for the most part by the nature of amide residues attached at the P atom. The antitumor effect can be varied within a broad range by changing this residue, the maximum antitumor activity being inherent in nonsym. triamides containing the ethylenimine residue.

When you point to this article, it is believed that you are also very interested in this compound(3685-23-2)Recommanded Product: cis-4-Aminocyclohexane carboxylic acid and due to space limitations, I can only present the most important information.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Analyzing the synthesis route of 56413-95-7

When you point to this article, it is believed that you are also very interested in this compound(56413-95-7)Computed Properties of C6Cl2N4 and due to space limitations, I can only present the most important information.

Computed Properties of C6Cl2N4. The reaction of aromatic heterocyclic molecules with protons is called protonation. Aromatic heterocycles are more basic than benzene due to the participation of heteroatoms. Compound: 5,6-Dichloropyrazine-2,3-dicarbonitrile, is researched, Molecular C6Cl2N4, CAS is 56413-95-7, about Preparation of magnesium azaphthalocyanines by cyclotetramerization of S-substituted 4,5-disulfanylpyrazine-2,3-dicarbonitriles. Author is Mrkved, Eva H.; Holmaas, Lars T.; Kjsen, Helge; Hvistendahl, Georg.

Four novel S-substituted 4,5-disulfanylpyrazine-2,3-dicarbonitriles were obtained in a multistep synthesis from diaminomaleonitrile. Two of these dicarbonitriles, with Et or benzyl S-substituents, give pure Mg azaphthalocyanines in good yields when reacted with Mg propoxide in PrOH and dioxane. Aromatic S-substituents are less stable during the reaction conditions used for cyclizations, and product mixtures were obtained.

When you point to this article, it is believed that you are also very interested in this compound(56413-95-7)Computed Properties of C6Cl2N4 and due to space limitations, I can only present the most important information.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Top Picks: new discover of 616-43-3

When you point to this article, it is believed that you are also very interested in this compound(616-43-3)Recommanded Product: 616-43-3 and due to space limitations, I can only present the most important information.

Heterocyclic compounds can be divided into two categories: alicyclic heterocycles and aromatic heterocycles. Compounds whose heterocycles in the molecular skeleton cannot reflect aromaticity are called alicyclic heterocyclic compounds. Compound: 616-43-3, is researched, Molecular C5H7N, about Theoretical and experimental study of monosubstituted pyrroles, the main research direction is pyrrole UV spectra; formation energy pyrrole; electronic transition pyrrole.Recommanded Product: 616-43-3.

The energies of formation of 2-substituted pyrroles and 3-substituted pyrroles are almost the same; and the wavelengths of the π → π* electronic transition increase in the following order: H < Me < CN < CO2H < CH:NOH < CHO < NO2. Exptl. studies confirm the theoretical relation between wavelength and substituent. The larger bathochromic shifts are observed for the 2-substituted compounds When you point to this article, it is believed that you are also very interested in this compound(616-43-3)Recommanded Product: 616-43-3 and due to space limitations, I can only present the most important information.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Chemical Research in 56413-95-7

When you point to this article, it is believed that you are also very interested in this compound(56413-95-7)HPLC of Formula: 56413-95-7 and due to space limitations, I can only present the most important information.

Isoda, Kyosuke; Takahashi, Hinako; Mutoh, Yuichiro; Hoshino, Norihisa; Akutagawa, Tomoyuki published the article 《One-dimensional single-helix coordination polymer self-assembled by a crown-ether appended-N-heteroacene radical anion》. Keywords: heteroacene crown ether radical anion preparation crystal mol structure; dicyanopentaoxacyclopentadecinopyrazinoquinoxaline preparation crystal mol structure reaction alkali tetraphenylborate.They researched the compound: 5,6-Dichloropyrazine-2,3-dicarbonitrile( cas:56413-95-7 ).HPLC of Formula: 56413-95-7. Aromatic heterocyclic compounds can be divided into two categories: single heterocyclic and fused heterocyclic. In addition, there is a lot of other information about this compound (cas:56413-95-7) here.

A crown-ether appended N-heteroacene 1 was reduced in the presence of NaBPh4 to the radical anion 2 by accepting one electron transferred from both the cathode and BPh4- as a reductant. The obtained radical anion 2 can function as a radical anion ligand to bridge two sodium ions to self-assemble into one-dimensional helical coordination polymers.

When you point to this article, it is believed that you are also very interested in this compound(56413-95-7)HPLC of Formula: 56413-95-7 and due to space limitations, I can only present the most important information.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate