New learning discoveries about 616-43-3

As far as I know, this compound(616-43-3)HPLC of Formula: 616-43-3 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《New synthesis of serotonin》. Authors are Noland, Wayland E.; Hovden, Robert A..The article about the compound:3-Methyl-1H-pyrrolecas:616-43-3,SMILESS:CC1=CNC=C1).HPLC of Formula: 616-43-3. Through the article, more information about this compound (cas:616-43-3) is conveyed.

Dropwise addition of a molar excess of nitroethylene to molten 5-benzyloxyindole at steam bath temperature 1.83 hrs. gave 3-(2-nitroethyl)-5-benzyloxyindole (I), m. 93.5-5.0° (CH2Cl2-ligroine), in 45% yield. Use of excess nitroethylene is desirable since unreacted 5-benzyloxyindole (36%) and 64% I form a eutectic mixture, m. 81-1.5°. Similar reactions of 5-benzyloxyindole with equimolar portions of β-nitrostyrene 6 hrs. and β-methyl-β-nitrostyrene for 22 hrs. gave 72 and 37% yields, resp., of 3-(1-phenyl-2-nitroethyl)-5-benzyloxyindole (II), platelets, m. 117-18° (alc.), and 3-(1-phenyl-2-nitropropyl)-5-benzyloxyindole (III), m. 152-2.5° (alc.). Hydrogenation at 2 atm. over PtO2 of I-III gave in high yields the corresponding tryptamines, isolated as the picrates. I gave 84% yield as reddish orange crystals, m. 231.5-2.0° (decomposition). III gave 94% yield, red crystals, m. 176-6.5° (alc.) and III gave 62% yield, red crystals, m. 213-15°. The tryptamine from I was characterized as the hydrochloride, m. 245-7° (decomposition). Hydrogenation of I at 2 atm. over 10% Pd-C resulted in concomitant reduction of the NO2 group and debenzylation to give 69% serotonin (IV) as the creatinine sulfate hydrate, m. 212-14°. This new synthesis of IV from 5-benzyloxyindole appeared to be higher in over-all yield than most reported methods. It was also simpler than previously described methods.

As far as I know, this compound(616-43-3)HPLC of Formula: 616-43-3 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

What kind of challenge would you like to see in a future of compound: 56413-95-7

As far as I know, this compound(56413-95-7)Category: chiral-oxygen-ligands can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Lee, Bum Hoon; Jaung, Jae Yun; Jeong, Sung Hoon published the article 《Synthesis and dyeing properties of dicyanopyrazine dyes》. Keywords: cyanopyrazine dye preparation use polyamide polyester.They researched the compound: 5,6-Dichloropyrazine-2,3-dicarbonitrile( cas:56413-95-7 ).Category: chiral-oxygen-ligands. Aromatic heterocyclic compounds can be divided into two categories: single heterocyclic and fused heterocyclic. In addition, there is a lot of other information about this compound (cas:56413-95-7) here.

Reaction of 2,3-dichloro-5,6-dicyanopyrazine with various Fischer’s base type enamines gave the corresponding 2-chloro-5,6-dicyanopyrazine derivatives The reactive-disperse dyes showed large differences in λmax from solution to solid state resulting from strong intermol. π-π interactions. These dyes have rather small mol. size but have a strong intramol. charge-transfer chromophoric system. The absorption maxima of these compounds were observed at 463∼560 nm. The electronic character of the substituents in the dyes strongly affects their absorption spectra, producing bathochromic shifts depending on both the basicity of the heterocyclic moiety and the enlargement of the π-conjugated system. The dyeability of 2 of the dyes toward polyester and nylon fiber were generally good. Wash, perspiration, and rubbing fastness were excellent, while light fastness was poor, probably due to the oxidation of the enamine moiety.

As far as I know, this compound(56413-95-7)Category: chiral-oxygen-ligands can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

The effect of the change of synthetic route on the product 3685-23-2

As far as I know, this compound(3685-23-2)Product Details of 3685-23-2 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Synthesis of an octadecapeptide and its 18-amide analog corresponding to the first eighteen amino acid residues of corticotropin (ACTH) and their biological activities》. Authors are Otsuka, Hideo; Inouye, Ken; Shinozaki, Fusako; Kanayama, Makoto.The article about the compound:cis-4-Aminocyclohexane carboxylic acidcas:3685-23-2,SMILESS:N[C@H]1CC[C@H](CC1)C(O)=O).Product Details of 3685-23-2. Through the article, more information about this compound (cas:3685-23-2) is conveyed.

The title compound (I) and its 18-amide analog (II) were synthesized. The activities of I, II, H-Gly-Tyr-Ser-Met-Glu-His-Phe-Arg-Try-Gly-Lys-Pro-Val-Gly-Arg-Arg-OH (III) (CA 63, 670f), and H-Gly-Tyr-Ser-Met-Glu-His-Phe-Arg-Try-Gly-Lys-Pro-Val-Gly-Lys-Arg-Arg-NH2 (IV) (CA 63, 16462d) were compared (cf. the table). (BOC = tert-BuO2C and Cbz = PhCH2O2C). Steroidogenic U.S.P. units/mg., Lipolytic minimal effective dose (γ); In vivo, In vitro, Rabbit, Rat; I, 17.07, 9.35, 0.000075, 0.0045; II, 39.6;58.0, 4.7;11.5, 0.000004, 0.0027; III, 0.124, 0.134, 0.00093, 0.021; IV, 2.72; 1.26, 0.00042, 0.0037; Coupling of BOC-Ser-Tyr-Ser-Met-N3 with H-Glu(γ-tert-Bu)-His-Phe-Arg-Try-Gly-OH gave BOC-Ser-Tyr-Ser-Met-Glu(γ-tert-Bu)-His-Phe-Arg-Try-Gly-OH (V), m. 202° (decomposition), [α]24D -13.2° (c 1.0, HCONMe2). Reaction of Cbz-Lys(BOC)-Pro-Val-Gly-Lys(BOC)-N3 with either H-Lys(BOC)-Arg-Arg-OH or its amide gave Cbz-Lys(BOC)-Pro-Val-Gly-Lys(BOC)-Lys(BOC)-Arg-Arg-OH (VI), [α]25.5D -46.1° (c 1.0, 50% AcOH), or its amide (VII), [α]22.5D -43.7° (c 1.75, 50% AcOH). Coupling of N-hydroxysuccinimide ester of V with the hydrogenolyzed VI or VII gave BOC-Ser-Tyr-Ser-Met-Glu(γ-tert-Bu)-His-Phe-Arg-Try-Gly-Lys(BOC)-Pro-Val-Gly-Lys(BOC)-Lys(BOC)-Arg-Arg-OH (VIII) or its amide (IX), resp. VIII was purified on carboxymethyl cellulose columns and treated with 90% F3CCO2H to give I, λ (0.1N NaOH) 281.5 mμ (ε 7030), 288.5 mμ (ε 6820), [α]25D -54.6° (c 0.5, 0.1N AcOH). Similarly, IX gave II, λ (0.1N NaOH) 281.5 mμ (ε 7050), 288.5 mμ (ε 6740), [α]24D -55.8° (c 0.5, 0.1N AcOH). Amino acid analysis of I and II confirmed their structures.

As far as I know, this compound(3685-23-2)Product Details of 3685-23-2 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Introduction of a new synthetic route about 56413-95-7

As far as I know, this compound(56413-95-7)Recommanded Product: 5,6-Dichloropyrazine-2,3-dicarbonitrile can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Most of the natural products isolated at present are heterocyclic compounds, so heterocyclic compounds occupy an important position in the research of organic chemistry. A compound: 56413-95-7, is researched, SMILESS is N#CC1=NC(Cl)=C(Cl)N=C1C#N, Molecular C6Cl2N4Journal, Journal of Heterocyclic Chemistry called Synthesis of pyrido[1′,2′:1,2]imidazo[4,5-b]pyrazines from 2,3-dichloro-5,6-dicyanopyrazine with 2-aminopyridines, Author is Suzuki, Toshinobu; Nagae, Yasushi; Mitsuhashi, Keiryo, the main research direction is chlorodicyanopyrazine cyclocondensation aminopyridine; pyridoimidazopyrazine.Recommanded Product: 5,6-Dichloropyrazine-2,3-dicarbonitrile.

Novel synthesis of the title compounds I (R = H, 6-, 7-, 8-, 9-Me, 8-Cl, 8-Br, 6-PhCH2O) by the facile cyclization between 2,3-dichloro-5,6-dicyanopyrazine and various 2-aminopyridines II under relatively mild conditions is described. The reactivity depended on the basicity of 2-aminopyridines.

As far as I know, this compound(56413-95-7)Recommanded Product: 5,6-Dichloropyrazine-2,3-dicarbonitrile can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Research on new synthetic routes about 616-43-3

This literature about this compound(616-43-3)Safety of 3-Methyl-1H-pyrrolehas given us a lot of inspiration, and I hope that the research on this compound(3-Methyl-1H-pyrrole) can be further advanced. Maybe we can get more compounds in a similar way.

Most of the natural products isolated at present are heterocyclic compounds, so heterocyclic compounds occupy an important position in the research of organic chemistry. A compound: 616-43-3, is researched, SMILESS is CC1=CNC=C1, Molecular C5H7NJournal, Article, Research Support, Non-U.S. Gov’t, Journal of Agricultural and Food Chemistry called Sensory and Instrumental Analyses of Volatiles Generated during the Extrusion Cooking of Oat Flours, Author is Parker, Jane K.; Hassell, Glynis M. E.; Mottram, Donald S.; Guy, Robin C. E., the main research direction is oat flour volatile compound extrusion cooking.Safety of 3-Methyl-1H-pyrrole.

Three batches of oats were extruded under four combinations of process temperature (150 or 180°C) and process moisture (14.5 and 18%). Two of the extrudates were evaluated by a sensory panel, and three were analyzed by GC-MS. Maillard reaction products, such as pyrazines, pyrroles, furans, and sulfur-containing compounds, were found in the most severely processed extrudates (high-temperature, low-moisture). These extrudates were also described by the assessors as having toasted cereal attributes. Lipid degradation products, such as alkanals, 2-alkenals, and 2,4-alkadienals, were found at much higher levels in the extrudates of the oat flour that had been debranned. It contained lower protein and fiber levels than the others and showed increased lipase activity. Extrudates from these samples also had significantly lower levels of Maillard reaction products that correlated, in the sensory anal., with terms such as stale oil and oatmeal. Linoleic acid was added to a fourth oat flour to simulate the result of increased lipase activity, and GC-MS anal. showed both an increase in lipid degradation products and a decrease in Maillard reaction products.

This literature about this compound(616-43-3)Safety of 3-Methyl-1H-pyrrolehas given us a lot of inspiration, and I hope that the research on this compound(3-Methyl-1H-pyrrole) can be further advanced. Maybe we can get more compounds in a similar way.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Chemical Properties and Facts of 56413-95-7

This literature about this compound(56413-95-7)Category: chiral-oxygen-ligandshas given us a lot of inspiration, and I hope that the research on this compound(5,6-Dichloropyrazine-2,3-dicarbonitrile) can be further advanced. Maybe we can get more compounds in a similar way.

Category: chiral-oxygen-ligands. The mechanism of aromatic electrophilic substitution of aromatic heterocycles is consistent with that of benzene. Compound: 5,6-Dichloropyrazine-2,3-dicarbonitrile, is researched, Molecular C6Cl2N4, CAS is 56413-95-7, about Antioxidant-substituted tetrapyrazinoporphyrazine as a fluorescent sensor for basic anions. Author is Hill, Jonathan P.; Subbaiyan, Navaneetha K.; D’Souza, Francis; Xie, Yongshu; Sahu, Satyajit; Sanchez-Ballester, Noelia M.; Richards, Gary J.; Mori, Toshiyuki; Ariga, Katsuhiko.

Tetrapyrazinoporphyrazine substituted at its periphery with eight antioxidant 3,5-di-t-butyl-4-hydroxyphenyl groups behaves as a turn-on fluorescent sensor for fluoride anions. Conversely, the precursor antioxidant-substituted 1,2-phthalonitrile was found to act in turn-off mode suggesting that the origin of the phenomenon lies at the phenolate-substituted 1,4-pyrazinyl moiety.

This literature about this compound(56413-95-7)Category: chiral-oxygen-ligandshas given us a lot of inspiration, and I hope that the research on this compound(5,6-Dichloropyrazine-2,3-dicarbonitrile) can be further advanced. Maybe we can get more compounds in a similar way.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Share an extended knowledge of a compound : 616-43-3

This literature about this compound(616-43-3)Recommanded Product: 3-Methyl-1H-pyrrolehas given us a lot of inspiration, and I hope that the research on this compound(3-Methyl-1H-pyrrole) can be further advanced. Maybe we can get more compounds in a similar way.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Raman spectra of pyrroles and a few derivatives》. Authors are Stern, A.; Thalmayer, K..The article about the compound:3-Methyl-1H-pyrrolecas:616-43-3,SMILESS:CC1=CNC=C1).Recommanded Product: 3-Methyl-1H-pyrrole. Through the article, more information about this compound (cas:616-43-3) is conveyed.

Raman spectra were obtained for pyrrole and the following derivatives, 3-Me; 2,3-di-Me; 2,4-di-Et; 2-Et; 2-Me-4-Et; 2,4-di-Me-3,5-di-Et; 2,4-di-Et-3-Pr; 2,4-di-Et-3-Me. In pure pyrrole, frequencies corresponding to CC and CN double-bond vibrations and those of the methylene group were detected. These had only been found previously in substituted pyrroles. This indicates that free pyrrole also contains some of the pyrrolinene form and the earlier model of the mol. as proposed by Bonino, Manzoni-Ansidei and Pratesi (cf. C. A. 28,5336.8) must be modified.

This literature about this compound(616-43-3)Recommanded Product: 3-Methyl-1H-pyrrolehas given us a lot of inspiration, and I hope that the research on this compound(3-Methyl-1H-pyrrole) can be further advanced. Maybe we can get more compounds in a similar way.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Share an extended knowledge of a compound : 56413-95-7

This literature about this compound(56413-95-7)Quality Control of 5,6-Dichloropyrazine-2,3-dicarbonitrilehas given us a lot of inspiration, and I hope that the research on this compound(5,6-Dichloropyrazine-2,3-dicarbonitrile) can be further advanced. Maybe we can get more compounds in a similar way.

Epoxy compounds usually have stronger nucleophilic ability, because the alkyl group on the oxygen atom makes the bond angle smaller, which makes the lone pair of electrons react more dissimilarly with the electron-deficient system. Compound: 5,6-Dichloropyrazine-2,3-dicarbonitrile, is researched, Molecular C6Cl2N4, CAS is 56413-95-7, about 5,6-Dicyano-2,3-dithiopyrazine (dcdmp) chemistry: synthesis and crystal structure of Au(III)(dcdmp)2 complexes and 2,3,7,8-tetracyano-1,4,6,9-tetraazathianthrene.Quality Control of 5,6-Dichloropyrazine-2,3-dicarbonitrile.

As an effort to explore new complexes of the 2,3-dicyano-5,6-dimercaptopyrazine (dcdmp) ligand with different transition metals, different salts containing both the Au(dcdmp)2 – complex and the new species 2,3,7,8-tetracyano-1,4,6,9-tetraazathianthrene (tctata), were obtained and characterized. Bu4N[Au(dcdmp)2] crystallizes in monoclinic space group C2/c, Z = 8 with a 35.147(4), b 9.527(1), c 21.792(2) Å and β 109.626(8)°. Its crystal structure consist of almost regular columns of [Au(dcdmp)2]-, stacked along b, surrounded by Bu4N+ cations. Bu4N[AuBr2(tctata)] crystallizes in triclinic space group P1̅, Z = 2, with a 10.986(1), b 13.230(2), c 13.791(1) Å, α 79.150(9), β 69.663(6), γ 70.254(9)°. The crystal packing is made by zigzag chains of tctata separated by layers of cations, with AuBr2 anions located in alternated cavities between the tctata chains and the cation layers. At last, Bu4N[Au(dcdmp)2].(tctata) crystallizes in monoclinic space group P21/n, Z = 4, with a 10.693(2), b 40.308(7), c 10.870(1) Å, β 92.16(1)°. Its crystal structure can be seen has a mix of those of the two preceding compounds It consists of bidimensional layers composed of out of registry parallel zigzag chains of alternating tctata and [Au(dcdmp)2]- units. The adjacent layers are separated by layers of [Bu4N]+. In the last two compounds the tctata appears as a planar mol.

This literature about this compound(56413-95-7)Quality Control of 5,6-Dichloropyrazine-2,3-dicarbonitrilehas given us a lot of inspiration, and I hope that the research on this compound(5,6-Dichloropyrazine-2,3-dicarbonitrile) can be further advanced. Maybe we can get more compounds in a similar way.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Simple exploration of 56413-95-7

This literature about this compound(56413-95-7)Computed Properties of C6Cl2N4has given us a lot of inspiration, and I hope that the research on this compound(5,6-Dichloropyrazine-2,3-dicarbonitrile) can be further advanced. Maybe we can get more compounds in a similar way.

Computed Properties of C6Cl2N4. The fused heterocycle is formed by combining a benzene ring with a single heterocycle, or two or more single heterocycles. Compound: 5,6-Dichloropyrazine-2,3-dicarbonitrile, is researched, Molecular C6Cl2N4, CAS is 56413-95-7, about Structure-Property Relationships and Nonlinear Optical Effects in Donor-Substituted Dicyanopyrazine-Derived Push-Pull Chromophores with Enlarged and Varied π-Linkers. Author is Bures, Filip; Cermakova, Hana; Kulhanek, Jiri; Ludwig, Miroslav; Kuznik, Wojciech; Kityk, Iwan V.; Mikysek, Tomas; Ruzicka, Ales.

Thirteen new, stable, push-pull systems featuring dimethylamino and pyrazine-2,3-dicarbonitrile moieties as the donor and acceptor, resp., and systematically extended and varied π-linkers were prepared and studied. Evaluation of the measured UV/Vis spectra, electrochem. data (cyclic voltammetry, rotating disk voltammetry, and polarog.), x-ray data, and exptl. determined and calculated hyperpolarizability values enabled structure-property studies; these revealed some important structural features that affected the efficiency of intramol. charge-transfer and nonlinear optical properties in this class of heterocyclic push-pull chromophores. The charge-transfer transition was most significantly affected by structural features such as π-linker length, chromophore planarity, and the number of 1,4-phenylene/ethynylene subunits in the π-linker.

This literature about this compound(56413-95-7)Computed Properties of C6Cl2N4has given us a lot of inspiration, and I hope that the research on this compound(5,6-Dichloropyrazine-2,3-dicarbonitrile) can be further advanced. Maybe we can get more compounds in a similar way.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Final Thoughts on Chemistry for 616-43-3

This literature about this compound(616-43-3)Recommanded Product: 616-43-3has given us a lot of inspiration, and I hope that the research on this compound(3-Methyl-1H-pyrrole) can be further advanced. Maybe we can get more compounds in a similar way.

The preparation of ester heterocycles mostly uses heteroatoms as nucleophilic sites, which are achieved by intramolecular substitution or addition reactions. Compound: 3-Methyl-1H-pyrrole( cas:616-43-3 ) is researched.Recommanded Product: 616-43-3.Liu, Dachun; Lash, Timothy D. published the article 《Conjugated Macrocycles Related to the Porphyrins. 25.Proton NMR Spectroscopic Evidence for a Preferred [18]Annulene Substructure in Carbaporphyrins from the Magnitude of Selected 4JH,H CH:C-CH3 Coupling Constants》 about this compound( cas:616-43-3 ) in Journal of Organic Chemistry. Keywords: benzocarbaporphyrin preparation NMR. Let’s learn more about this compound (cas:616-43-3).

Two new benzocarbaporphyrins with four or five alkyl substituents have been synthesized by the “”3 + 1″” MacDonald methodol. At lower temperatures, the proton NMR spectrum of the asym. substituted carbaporphyrin I gave two NH resonances, while carbaporphyrin II, which retains a plane of symmetry, gave only one resonance of this kind. As no addnl. peaks were seen for the remaining protons, these data strongly support the proposal that a single tautomer predominates in solution where the two NH protons flank the interior CH. Carbaporphyrin I, which has a CH:CMe unit on the pyrrolic ring opposite the indene moiety, gave a long-range coupling constant of 4JMe,H = 1.3-1.4 Hz. On the other hand, the CH:CMe units of II, which correspond to the pyrrole rings on each side of the carbocyclic moiety, gave 4JMe,H = 0.9-1.0 Hz. These values are in accord with those expected if the exterior carbon-carbon bonds of the pyrrole units next to the indene ring are part of a fully delocalized 18π electron system, while the C:C bond of the remaining pyrrole ring retains substantial olefinic character.

This literature about this compound(616-43-3)Recommanded Product: 616-43-3has given us a lot of inspiration, and I hope that the research on this compound(3-Methyl-1H-pyrrole) can be further advanced. Maybe we can get more compounds in a similar way.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate