Share an extended knowledge of a compound : 56413-95-7

In addition to the literature in the link below, there is a lot of literature about this compound(5,6-Dichloropyrazine-2,3-dicarbonitrile)Formula: C6Cl2N4, illustrating the importance and wide applicability of this compound(56413-95-7).

In general, if the atoms that make up the ring contain heteroatoms, such rings become heterocycles, and organic compounds containing heterocycles are called heterocyclic compounds. An article called Synthesis of mono-, di-, tri- and tetracarboxy azaphthalocyanines as potential dark quenchers, published in 2011, which mentions a compound: 56413-95-7, Name is 5,6-Dichloropyrazine-2,3-dicarbonitrile, Molecular C6Cl2N4, Formula: C6Cl2N4.

Mono-, di-, tri- and tetracarboxy-substituted metal-free azaphthalocyanines (AzaPc) were synthesized from 5,6-bis(diethylamino)pyrazine-2,3-dicarbonitrile and 6-(5,6-dicyano-3-(diethylamino)pyrazin-2-ylamino)hexanoic acid using a statistical condensation approach. AzaPc bearing eight diethylamino peripheral substituents was also isolated from the mixture Anal. of the distribution of congeners in the statistical mixture using optimized HPLC method (Phenomenex Synergy RP Fusion column, acetonitrile/tetrahydrofuran/water (pH 5.5) 50:20:30) was performed. The anal. showed optimal ratios of starting materials to be 3:1 for AAAB, 1:3 for ABBB and 1:1 for AABB/ABAB types of the congeners. The distribution of the congeners corresponded well with calculated values indicating similar reactivity of both starting materials and no steric constraint between adjacent isoindole units in the AzaPc ring. All studied AzaPc showed no fluorescence, extremely low singlet oxygen quantum yields (Φ Δ < 0.005) in monomeric form and strong absorption in a wide range from 300 nm to almost 700 nm. Such properties are highly promising for future study of these compounds as dark quenchers of fluorescence in DNA hybridization probes. In addition to the literature in the link below, there is a lot of literature about this compound(5,6-Dichloropyrazine-2,3-dicarbonitrile)Formula: C6Cl2N4, illustrating the importance and wide applicability of this compound(56413-95-7).

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

More research is needed about 3685-23-2

In addition to the literature in the link below, there is a lot of literature about this compound(cis-4-Aminocyclohexane carboxylic acid)Category: chiral-oxygen-ligands, illustrating the importance and wide applicability of this compound(3685-23-2).

Category: chiral-oxygen-ligands. Aromatic compounds can be divided into two categories: single heterocycles and fused heterocycles. Compound: cis-4-Aminocyclohexane carboxylic acid, is researched, Molecular C7H13NO2, CAS is 3685-23-2, about Liquid-phase hydrogenation of some aromatic acids on ruthenium catalysts. Author is Ponomarev, A. A.; Ryzhenko, L. M.; Smirnova, N. S..

Using 10% RuO2 or Ru on activated the hydrogenation was carried out at 100-20° in H2O or in aqueous alk. solutions The following compounds gave 60-99% yields of the following products (starting compound and product given): p-H2NC6H4CO2H, p-aminohexa-hydrobenzoic acid (I); p-O2NC6H4CO2H, I; m-H2NC6H4CO2H, m-aminohexahydrobenzoic acid (II), m-O2NC6H4CO2H, II; m-NaOC6H4CO2Na, m-hydroxyhexahydrobenzoic acid; disodium 2-methylterephthalate, 2-methylhexahydroterephthalic acid.

In addition to the literature in the link below, there is a lot of literature about this compound(cis-4-Aminocyclohexane carboxylic acid)Category: chiral-oxygen-ligands, illustrating the importance and wide applicability of this compound(3685-23-2).

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Chemistry Milestones Of 616-43-3

In addition to the literature in the link below, there is a lot of literature about this compound(3-Methyl-1H-pyrrole)Synthetic Route of C5H7N, illustrating the importance and wide applicability of this compound(616-43-3).

The preparation of ester heterocycles mostly uses heteroatoms as nucleophilic sites, which are achieved by intramolecular substitution or addition reactions. Compound: 3-Methyl-1H-pyrrole( cas:616-43-3 ) is researched.Synthetic Route of C5H7N.Wei, Binqing Q.; Baase, Walter A.; Weaver, Larry H.; Matthews, Brian W.; Shoichet, Brian K. published the article 《A Model Binding Site for Testing Scoring Functions in Molecular Docking》 about this compound( cas:616-43-3 ) in Journal of Molecular Biology. Keywords: active site lysozyme binding ligand electrostatic force mol modeling. Let’s learn more about this compound (cas:616-43-3).

Prediction of interaction energies between ligands and their receptors remains a major challenge for structure-based inhibitor discovery. Much effort has been devoted to developing scoring schemes that can successfully rank the affinities of a diverse set of possible ligands to a binding site for which the structure is known. To test these scoring functions, well-characterized exptl. systems can be very useful. Here, mutation-created binding sites in T4 lysozyme were used to investigate how the quality of at. charges and solvation energies affects mol. docking. At. charges and solvation energies were calculated for 172,118 mols. in the Available Chems. Directory using a semi-empirical quantum mech. approach by the program AMSOL. The database was first screened against the apolar cavity site created by the mutation Leu99Ala (L99A). Compared to the electronegativity-based charges that are widely used, the new charges and desolvation energies improved ranking of known apolar ligands, and better distinguished them from more polar isosteres that are not observed to bind. To investigate whether the new charges had predictive value, the non-polar residue Met102, which forms part of the binding site, was changed to the polar residue glutamine. The structure of the resulting Leu99 Ala and Met102 Gln double mutant of T4 lysozyme (L99A/M102Q) was determined and the docking calculation was repeated for the new site. Seven representative polar mols. that preferentially docked to the polar vs. the apolar binding site were tested exptl. All seven bind to the polar cavity (L99A/M102Q) but do not detectably bind to the apolar cavity (L99A). Five ligand-bound structures of L99A/M102Q were determined by X-ray crystallog. Docking predictions corresponded to the crystallog. results to within 0.4 A RMSD. Improved treatment of partial at. charges and desolvation energies in database docking appears feasible and leads to better distinction of true ligands. Simple model binding sites, such as L99A and its more polar variants, may find broad use in the development and testing of docking algorithms.

In addition to the literature in the link below, there is a lot of literature about this compound(3-Methyl-1H-pyrrole)Synthetic Route of C5H7N, illustrating the importance and wide applicability of this compound(616-43-3).

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Fun Route: New Discovery of 616-43-3

In addition to the literature in the link below, there is a lot of literature about this compound(3-Methyl-1H-pyrrole)Safety of 3-Methyl-1H-pyrrole, illustrating the importance and wide applicability of this compound(616-43-3).

Safety of 3-Methyl-1H-pyrrole. The reaction of aromatic heterocyclic molecules with protons is called protonation. Aromatic heterocycles are more basic than benzene due to the participation of heteroatoms. Compound: 3-Methyl-1H-pyrrole, is researched, Molecular C5H7N, CAS is 616-43-3, about Computational Design and Electropolymerization of Molecularly Imprinted Poly(p-Aminobenzoic-Acid-Co-Dapsone) Using Multivariate Optimization for Tetradifon Residue Analysis. Author is Ganjeizadeh Rohani, Fatemeh; Mohadesi, Alireza; Ansari, Mehdi.

In this study, tetradifon as a non-electroactive pesticide was measured by a new gold electrode modified with electropolymerized molecularly imprinted poly(para aminobenzoic acid-co-4,4-diaminodiphenyl sulfone) (P-pABA-co-DDS). The best available monomer was selected based on computational design and then the polymer was developed in optimized condition. Screening of various factors was performed by Plackett-Burman design (PBD) and central composite design (CCD) was utilized to select optimized condition. Under the optimized condition, calibration curve of tetradifon on MIP/gold electrode was constructed with a linear range of 0.05- 2.50μM. The limit of detection (LOD) and limit of quantification (LOQ) was found to be 0.014 and 0.047μM, resp. The developed method showed good stability, repeatability, and reproducibility, sensitivity and selectivity for tetradifon. The developed method was applied to determine tetradifon in real water samples.

In addition to the literature in the link below, there is a lot of literature about this compound(3-Methyl-1H-pyrrole)Safety of 3-Methyl-1H-pyrrole, illustrating the importance and wide applicability of this compound(616-43-3).

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

The effect of the change of synthetic route on the product 616-43-3

In addition to the literature in the link below, there is a lot of literature about this compound(3-Methyl-1H-pyrrole)Name: 3-Methyl-1H-pyrrole, illustrating the importance and wide applicability of this compound(616-43-3).

So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic.Buurman, P.; Nierop, K. G. J.; Kaal, J.; Senesi, N. researched the compound: 3-Methyl-1H-pyrrole( cas:616-43-3 ).Name: 3-Methyl-1H-pyrrole.They published the article 《Analytical pyrolysis and thermally assisted hydrolysis and methylation of EUROSOIL humic acid samples – A key to their source》 about this compound( cas:616-43-3 ) in Geoderma. Keywords: humic acid Eurosoil aliphaticity lignin. We’ll tell you more about this compound (cas:616-43-3).

Humic acids have been widely investigated by spectroscopic methods, especially NMR and FTIR, and they are known to show significant differences according to their origin. Low resolution methods such as NMR and FTIR, however cannot easily distinguish different input sources or establish relations between SOM chem. and vegetation or land use in general. High resolution methods, such as anal. pyrolysis and pyrolysis combined with methylation do offer such possibilities. Therefore, HAs from five reference soils called the Eurosoils, including a Vertic Cambisol (E1, Italy), a Rendzina (E2, Greece), a Dystic Cambisol (E3, Great Britain), an Orthic Luvisol (E4, France) and an Orthic Podzol (E5, Germany), that were previously characterized a.o. by NMR, FTIR and ESR, were also analyzed by pyrolysis-gas chromatog./mass spectrometry (Py-GC/MS) and thermally assisted hydrolysis and methylation (THM) and subsequent anal. by GC/MS. The Orthic Podzol sample showed the largest aliphaticity, and the strongest degradation of aliphatics and lignin. The Dystric Cambisol featured the least decomposed HA, which was reflected by a large content of long-chain alkanes, and little lignin degradation Both the Dystric Cambisol and the Orthic Luvisol HAs contained a significant amount of microbial organic matter. Polyaromatics, which indicate the presence of charred material, were most abundant in the Vertic Cambisol and the Podzol HAs and lowest in the Dystric Cambisol and the Rendzina HAs. THM was able to distinguish between the various vegetations/land uses. Although quantifications by NMR and py-GC/MS are essentially different, the general results largely coincided. NMR appears to underestimate aromaticity and overestimate aliphaticity, but a mol. mixing model yielded reasonable correlations between NMR and pyrolysis data. Classification by degradation state’ based on py-GC/MS largely coincided with acidity determined by titration, but FTIR data did not coincide. Py-GC/MS, with its much larger resolution, is a better tool to distinguish effects of vegetation, microbial input, and degradation HA’s produce the same variety of compounds upon pyrolysis as total SOM extracts and are therefore chem. not more simple than SOM. HA chem., however can be understood in the light of land use history and SOM dynamics.

In addition to the literature in the link below, there is a lot of literature about this compound(3-Methyl-1H-pyrrole)Name: 3-Methyl-1H-pyrrole, illustrating the importance and wide applicability of this compound(616-43-3).

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

What I Wish Everyone Knew About 616-43-3

In addition to the literature in the link below, there is a lot of literature about this compound(3-Methyl-1H-pyrrole)Recommanded Product: 616-43-3, illustrating the importance and wide applicability of this compound(616-43-3).

Recommanded Product: 616-43-3. The reaction of aromatic heterocyclic molecules with protons is called protonation. Aromatic heterocycles are more basic than benzene due to the participation of heteroatoms. Compound: 3-Methyl-1H-pyrrole, is researched, Molecular C5H7N, CAS is 616-43-3, about Study on porphyrin complex ligated with azaferrocene derivatives. Author is Nakashima, S.; Negishi, A.; Nakamura, J.; Okuda, T..

[5,10,15,20-Tetrakis(pentafluorophenyl)porphyrinato]iron complex ligated with azaferrocene has two crystal forms, while the corresponding complex ligated with 3-methylazaferrocene has only one crystal form. An introduction of Me substituent to the pyrrole ring makes a less stable complex.

In addition to the literature in the link below, there is a lot of literature about this compound(3-Methyl-1H-pyrrole)Recommanded Product: 616-43-3, illustrating the importance and wide applicability of this compound(616-43-3).

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Brief introduction of 616-43-3

In addition to the literature in the link below, there is a lot of literature about this compound(3-Methyl-1H-pyrrole)COA of Formula: C5H7N, illustrating the importance and wide applicability of this compound(616-43-3).

COA of Formula: C5H7N. Aromatic compounds can be divided into two categories: single heterocycles and fused heterocycles. Compound: 3-Methyl-1H-pyrrole, is researched, Molecular C5H7N, CAS is 616-43-3, about Nonhydrolyzable organic nitrogen in soil size separates from long-term agricultural experiments. Author is Leinweber, P.; Schulten, H.-R..

Total N (Nt), hydrolyzed N, NH3-N, and nonhydrolyzed N were determined in soil particle-size separates from unfertilized or manured treatments in five long-term (15-108 yr) experiments in Germany. The concentrations of all N fractions (i) increased with decreases in particle size and (ii) were higher in samples from manured treatments. Irresp. of particle size and soil management, nonhydrolyzed N accounted for 7 to 31% of Nt (mean: 19%). On average, 53% of nonhydrolyzed N could be volatilized by pyrolysis. Field-ionization mass spectra of the pyrolyzates of two hydrolysis residues showed that N heterocycles are major constituents of nonhydrolyzed N. In addition, 28 to 34% of total ionintensity was assigned to low-mass N compounds and aliphatic nitriles and amides. Shifts to higher volatilization temperatures with maxima at 450 to 520° in the thermograms of all N compounds indicated that chems. stability, or strong bonds to soil minerals, are main reasons for the resistance of these mols. to acid hydrolysis. Curie-point pyrolysis-gas chromatog./mass spectrometry using a N-selective detector and library searches enabled the identification of aliphatic, carbocyclic, and aromatic amines and nitriles, benzothiazole, substituted imidazoles, substituted pyrroles and pyrrolidine, substituted pyrazoles, and isoquinoline derivative, substituted pyrazines and piperazine, pyridine, and methylpyridine. In addition, low-mass N compounds such as hydrocyanic acid, N2, nitrogen monoxide, isocyanomethane, and hydrazoic acid were assigned so that, in total, 37 compounds were identified in the pyrolyzates of nonhydrolyzed N. Within this fraction, the authors distinguished (i) proteinaceous materials, nonhydrolyzable probably due to binding or occlusion by pedogenic oxides, and (ii) highly alkyl-substituted N heterocycles, which are structural constituents of stable humic substances.

In addition to the literature in the link below, there is a lot of literature about this compound(3-Methyl-1H-pyrrole)COA of Formula: C5H7N, illustrating the importance and wide applicability of this compound(616-43-3).

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Machine Learning in Chemistry about 56413-95-7

In addition to the literature in the link below, there is a lot of literature about this compound(5,6-Dichloropyrazine-2,3-dicarbonitrile)Synthetic Route of C6Cl2N4, illustrating the importance and wide applicability of this compound(56413-95-7).

Kostka, Miroslav; Zimcik, Petr; Miletin, Miroslav; Klemera, Petr; Kopecky, Kamil; Musil, Zbynek published the article 《Comparison of aggregation properties and photodynamic activity of phthalocyanines and azaphthalocyanines》. Keywords: phthalocyanine preparation aggregation photodynamic property; azaphthalocyanine preparation aggregation photodynamic property.They researched the compound: 5,6-Dichloropyrazine-2,3-dicarbonitrile( cas:56413-95-7 ).Synthetic Route of C6Cl2N4. Aromatic heterocyclic compounds can be divided into two categories: single heterocyclic and fused heterocyclic. In addition, there is a lot of other information about this compound (cas:56413-95-7) here.

Phthalocyanines (Pc) and their aza-analogs azaphthalocyanines (AzaPc) (tetrapyrazinoporphyrazines) with eight n-octylsulfanyl or tert-butylsulfanyl peripheral substituents and different central metals (Mg, Zn, metal-free) were synthesized. Dimerization constants Kd and absorption spectra of pure monomeric and dimeric magnesium complexes in toluene were calculated using series of absorbances at different concentrations The bulky tert-butylsulfanyl substituents were found to be much better inhibitors of aggregation than long alkyl chains. Also Pc are less aggregated in organic solvents then AzaPc, short explanation is given. Singlet oxygen production of Pc and AzaPc was compared using dye-sensitized photooxidation of 1,3-diphenylisobenzofuran in pyridine. Both Pc and AzaPc showed similar activity not dependent on type of peripheral substitution. Zinc complexes of both Pc and AzaPc exceeded the magnesium ones and metal-free dyes in singlet oxygen production approx. twice.

In addition to the literature in the link below, there is a lot of literature about this compound(5,6-Dichloropyrazine-2,3-dicarbonitrile)Synthetic Route of C6Cl2N4, illustrating the importance and wide applicability of this compound(56413-95-7).

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Chemical Research in 56413-95-7

In addition to the literature in the link below, there is a lot of literature about this compound(5,6-Dichloropyrazine-2,3-dicarbonitrile)Related Products of 56413-95-7, illustrating the importance and wide applicability of this compound(56413-95-7).

In organic chemistry, atoms other than carbon and hydrogen are generally referred to as heteroatoms. The most common heteroatoms are nitrogen, oxygen and sulfur. Now I present to you an article called Phenol-Substituted Tetrapyrazinoporphyrazines: pH-Dependent Fluorescence in Basic Media, published in 2015, which mentions a compound: 56413-95-7, mainly applied to zinc phenol substituted tetrapyrazinoporphyrazine preparation pH dependent fluorescence; phenol deprotonation switching off red fluorescence tetrapyrazinoporphyrazine solution microemulsion; azaphthalocyanines; fluorescence; intramolecular charge transfer; pH sensors; phthalocyanines, Related Products of 56413-95-7.

Tetrapyrazinoporphyrazines (TPyzPzs) bearing one, two, four or eight 3,5-di(tert-butyl)-4-hydroxyphenol moieties were synthesized as Zn(II) complexes and metal-free derivatives The deprotonation of the phenol using Bu4NOH induced the formation of a strong donor for intramol. charge transfer that switched OFF the red fluorescence (λF∼660 nm) of the parent Zn TPyzPzs. The changes were fully reversible for TPyzPzs with one to four phenolic moieties, and an irreversible modification was observed for TPyzPzs substituted with eight phenols. The sensors were anchored to lipophilic particles in H2O, and a pKa ∼12.5-12.7 was determined for the phenolic hydroxyl based on fluorescence changes in different buffers. A novel concept for fluorescence OFF-ON-OFF switching in metal-free TPyzPzs bearing phenolic moieties upon addition of specific amounts of base was demonstrated.

In addition to the literature in the link below, there is a lot of literature about this compound(5,6-Dichloropyrazine-2,3-dicarbonitrile)Related Products of 56413-95-7, illustrating the importance and wide applicability of this compound(56413-95-7).

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

New learning discoveries about 3685-23-2

In addition to the literature in the link below, there is a lot of literature about this compound(cis-4-Aminocyclohexane carboxylic acid)Quality Control of cis-4-Aminocyclohexane carboxylic acid, illustrating the importance and wide applicability of this compound(3685-23-2).

Most of the natural products isolated at present are heterocyclic compounds, so heterocyclic compounds occupy an important position in the research of organic chemistry. A compound: 3685-23-2, is researched, SMILESS is N[C@H]1CC[C@H](CC1)C(O)=O, Molecular C7H13NO2Journal, Article, Xenobiotica called Formation and pharmacokinetics of the active drug candoxatrilat in mouse, rat, rabbit, dog and man following administration of the prodrug candoxatril, Author is Kaye, B.; Brearley, C. J.; Cussans, N. J.; Herron, M.; Humphrey, M. J.; Mollatt, A. R., the main research direction is candoxatril candoxatrilat pharmacokinetics species.Quality Control of cis-4-Aminocyclohexane carboxylic acid.

Candoxatrilat, an active neutral endopeptidase inhibitor, was released rapidly from the inactive prodrug candoxatril in vivo in the mouse, rat, rabbit, dog and man. Oral doses of [14C]candoxatril were cleared rapidly, mostly by ester hydrolysis to candoxatrilat, in the mouse, dog and man. A complementary i.v. study in man with [14C]candoxatrilat showed that the active drug was virtually completely renally cleared. Neither candoxatril nor candoxatrilat underwent chiral inversion in man. The systemic availability of candoxatrilat from the oral prodrug was estimated to be 88, 53, 42, 17 and 32% in the mouse, rat, rabbit, dog and man resp. Plasma clearance of candoxatril was too rapid to enable pharmacokinetic parameter calculation in mice and rabbits; for man, the apparent oral clearance was 57.9 mL/min/kg and the elimination half-life was 0.46 h. For i.v. candoxatrilat, total plasma clearance values were 32, 15, 5.5, 5.8 and 1.9 mL/min/kg for the mouse, rat, rabbit, dog and man, resp. Renal clearance values were 8.7, 7.2, 2.9 and 1.7 mL/min/kg for the mouse, rat, dog and man, resp., and these approximated the resp. glomerular filtration rates. Allometric scaling with respect to body weight across the species allowed reasonable prediction of the above 2 clearance parameters in man.

In addition to the literature in the link below, there is a lot of literature about this compound(cis-4-Aminocyclohexane carboxylic acid)Quality Control of cis-4-Aminocyclohexane carboxylic acid, illustrating the importance and wide applicability of this compound(3685-23-2).

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate