Extended knowledge of 4254-15-3

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, (S)-Propane-1,2-diol.

4254-15-3,Researchers who often do experiments know that organic synthesis is a process of preparing more complex target molecules from simple raw materials through one or more chemical reactions. Generally, it requires fewer steps,and cheap raw materials.4254-15-3,A new synthetic method of this compound is introduced below.

Example 18C N-[(2Z)-3-butyl[1,3]thiazolo[4,5-c]pyridin-2(3H)-ylidene]-2-{[(2S)-2-hydroxypropyl]oxy}-5-(trifluoromethyl)benzamide (S)-propane-1,2-diol (52 mg, 0.68 mmol) in THF (1 mL) was treated with NaH (60percent dispersion; 27 mg, 0.68 mmol) at room temperature for 20 minutes. The mixture was cooled to 0¡ã C. and a solution of Example 18B (90 mg, 0.23 mmol) in THF (1 mL) was added. The mixture was allowed to warm to room temperature, and stirred for 4 hours. The mixture was diluted with saturated aqueous NaHCO3 (20 mL) and extracted with ethyl acetate (2.x.30 mL). The combined organic extracts were dried over anhydrous Na2SO4, filtered, and concentrated. The residue was purified by column chromatography using an Analogix.(R). Intelliflash280.(TM). (SiO2, 0-100percent ethyl acetate in hexanes) to afford 19 mg (19percent) of the title compound. 1H NMR (500 MHz, CDCl3) delta ppm 1.04 (t, J=7.48 Hz, 3H) 1.28 (d, J=6.41 Hz, 3H) 1.47-1.59 (m, 2H) 1.88-1.98 (m, 2H) 3.87 (t, J=8.85 Hz, 1H) 4.21-4.31 (m, 1H) 4.35 (dd, J=9.15, 2.75 Hz, 1H) 4.51-4.59 (m, 2H) 7.12 (d, J=8.85 Hz, 1H) 7.72 (dd, J=8.54, 2.14 Hz, 2H) 8.51 (d, J=1.83 Hz, 2H) 8.75 (s, 1H); MS (DCI/NH3) m/z 454 (M+H)+.

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, (S)-Propane-1,2-diol.

Reference£º
Patent; ABBOTT LABORATORIES; US2011/144165; (2011); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Research on new synthetic routes about 538-58-9

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about 538-58-9.

The major producers of chemicals have been the Europe, Japan and China. Due to the growing call for a cleaner, greener environment, people will have to find innovative ways to maintain their relevance. Here is a downstream synthesis route of the compound 538-58-9,538-58-9

538-58-9, General procedure: In a general procedure, dibenzylidene acetone (1 mmol), N,N-dimethylbarbituric acid/barbituric acid/thiobarbituric acid(1 mmol) and 4 mL of ethanol:water (1:1) were taken in a 50 mL round-bottomed flask. 10 mol% of tetrabutyl ammonium bromide (TBAB) was added to the mixture, and the contents were stirred. The reaction mixture was refluxed and the progress of the reaction was monitored by TLC using ethyl acetate:petroleum ether (30:70) as eluent for disappearance of active methylene compounds. After completion of the reaction, the reaction mixture was allowed to cool to room temperature and diluted with water (5 mL). The solid obtained was filtered at pump and washed with water:ethanol (2:1). The product was recrystallized with ethanol. The products were characterized by their spectral data.

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about 538-58-9.

Reference£º
Article; Aggarwal, Komal; Khurana, Jitender M.; Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy; vol. 143; (2015); p. 288 – 297;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

The origin of a common compound about (S)-Propane-1,2-diol

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,(S)-Propane-1,2-diol,4254-15-3,its application will become more common.

A common heterocyclic compound, 4254-15-3,(S)-Propane-1,2-diol, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 4254-15-3

Example 29; N-r(2Z)-3-butviri.31thiazolor4.5-clpyridin-2(3H)-ylidenel-2-(r(2S)-2-hvdroxypropylloxyl-5 -(trifluoromethyl)benzamide; (S)-propane-l,2-diol (52 mg, 0.68 mmol) in THF (1 mL) was treated with NaH (60percent dispersion; 27 mg, 0.68 mmol) at room temperature for 20 minutes. The mixture was cooled to O0C and a solution of Example 2OB (90 mg, 0.23 mmol) in THF (1 mL) was added. The mixture was allowed to warm to room temperature, and stirred for 4 hours. The mixture was diluted with saturated aqueous NaHCO3 (20 mL) and extracted with ethyl acetate (2 x 30 mL). The combined organic extracts were dried over anhydrous Na2SO4, filtered, and concentrated. The residue was purified by column chromatography using an Analogix.(R). Intellifiash280 .(TM). (SiO2, 0-100 percent ethyl acetate in hexanes) to afford 19 mg (19percent) of the title compound. 1H NMR (500 MHz, CDCl3) delta ppm 1.04 (t, J=7.48 Hz, 3 H) 1.28 (d, J=6.41 Hz, 3 H) 1.47 – 1.59 (m, 2 H) 1.88 – 1.98 (m, 2 H) 3.87 (t, J=8.85 Hz, 1 H) 4.21 – 4.31 (m, 1 H) 4.35 (dd, J=9.15, 2.75 Hz, 1 H) 4.51 – 4.59 (m, 2 H) 7.12 (d, J=8.85 Hz, 1 H) 7.72 (dd, J=8.54, 2.14 Hz, 2 H) 8.51 (d, J=I.83 Hz, 2 H) 8.75 (s, 1 H); MS (DCI/NH3) m/z 454 (M+H)+., 4254-15-3

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,(S)-Propane-1,2-diol,4254-15-3,its application will become more common.

Reference£º
Patent; ABBOTT LABORATORIES; FROST, Jennifer, M.; LATSHAW, Steven, P.; DART, Michael, J.; CARROLL, William, A.; PEREZ-MEDRANO, Arturo; KOLASA, Teodozyj; PATEL, Meena; NELSON, Derek, W.; LI, Tongmei; PEDDI, Sridhar; WANG, Xueqing; LUI, Bo; WO2010/71783; (2010); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Discovery of 4254-15-3

According to the analysis of related databases, (S)-Propane-1,2-diol, the application of this compound in the production field has become more and more popular.

In the chemical reaction process,reaction time,type of solvent,can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product.An updated downstream synthesis route of 4254-15-3,(S)-Propane-1,2-diol, as follows.4254-15-3

The four (4) step reaction sequence starting from 103-1 and 103-2 (prepared as shown from S-(+)-1,2-propanediol (103-0)) provided Boc-T103a in a very good overall yield of 85%. The alternatively protected analogue Ddz-T103a was prepared using the same procedure with an overall yield of 55% [1.4 g Ddz(2RMe)opy18 was obtained starting from 1 g (5.8 mmol) of 103-1]. Synthesis of the Boc-T103b stereoisomer proceeds similarly, but starting from R-(-)-1,2-propanediol.TLC: Rf: 0.3 (100% EtOAc)

According to the analysis of related databases, (S)-Propane-1,2-diol, the application of this compound in the production field has become more and more popular.

Reference£º
Patent; Tranzyme Pharma Inc.; US2008/194672; (2008); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Discovery of (S)-Butane-1,3-diol

According to the analysis of related databases, (S)-Butane-1,3-diol, the application of this compound in the production field has become more and more popular.

In the chemical reaction process,reaction time,type of solvent,can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product.An updated downstream synthesis route of 24621-61-2,(S)-Butane-1,3-diol, as follows.24621-61-2

The flask was charged with (S) -butane-1,3-diol (1.00 g, 11.10 mmol) in dichloromethane (DCM) (27 mL),Triethylamine (1.347 g, 13.32 mmol),4-Dimethylaminopyridine (0.136 g, 1.110 mmol) and 4-methylbenzene-1-sulfonyl chloride (2.327 g, 12.21 mmol) were added. The reaction was stirred at room temperature for 1 hour.Quench the reaction with saturated NH 4 Cl,Extracted with DCM. The organic portion was dried over MgSO 4, filtered and concentrated under reduced pressure to give a residue which was purified by silica gel chromatography eluting with 0-50% ethyl acetate / heptane to give the product (0. 288 g, 1.179 mmol, yield 10.62%).

According to the analysis of related databases, (S)-Butane-1,3-diol, the application of this compound in the production field has become more and more popular.

Reference£º
Patent; Abbvie Incorporated; Argiriadi, Maria A.; Breinlinger, Eric C.; Chien, Ellen Yulin Tsai; Cowart, Marlon D.; Frank, Kristine E.; Friedman, Michael M.; Hardy, David J.; Herold, J. Martin; Liu, Huaqing; Chu, Wei; Scanio, Marc J.; Schrimpf, Michael R.; Vargo, Thomas R.; Van Epps, Stacy A.; Webster, Matthew P.; Little, Andrew J.; Dunstan, Teresa A.; Katcher, Matthew H.; Schedler, David A.; (232 pag.)JP6557436; (2019); B1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Continuously updated synthesis method about (S)-Butane-1,3-diol

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. 24621-61-2, We look forward to the emergence of more reaction modes in the future.

In the chemical reaction process,reaction time,type of solvent,can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product.An updated downstream synthesis route of 24621-61-2,(S)-Butane-1,3-diol, as follows.24621-61-2

S- (+)-1, 3-butanediol (96 mg, 1.065 mmol) in 3 ml of pyridine was cooled in an ice-water bath and 4,4′-dimethoxytrityl chloride (430 mg, 1.27 mmol) was added thereto. The resulting mixture was stirred for 6 hours at room temperature. 10 ml of 5% NAHCO3 was added thereto and the resulting solution was extracted with 15 ml of ethyl acetate. The organic layer was dried over MGS04 and evaporated under a reduced pressure. The resulting yellow liquid residue was purified by silica gel column chlomatography (eluent-ethyl acetate: hexane = 1: 3) to obtain the title compound (401 mg, 1.02 mmol) in a yield of 96%. Rf= 0.3 (ethyl acetate: Hexane = 1 : 2); IR (NACI) nu (cm-1) 3462, 3059, 3034, 2959, 2927, 2848,2835, 1607,1508, 1250; 1H NMR (Acetone-d6) delta 7.49 (br, 1H), 7.46 (br, 1H), 7.36-7. 18 (m, 7H), 6.86 (t, 2H, J=2. 6Hz), 6.84 (t, 2H, J=2.6Hz), 3.93 (br, 1H), 3.73 (s, 6H), 3. 50 (br, 1H), 3.28-3. 14 (m, 2H), 1.73 (m, 2H), 1. 11 (d, 3H, J=6. 2Hz) ; 13C-NMR (75.5 MHz, Acetone-d6) delta 158. 1, 145. 3, 136. 1, 136.0, 129.5, 127. 6, 127.2, 126. 1, 112.5, 85. 4, 64. 2, 60. 6, 54. 2, 39.0, 23.1; MS-FAB (m/z): [M] + calcd for C25H28O4, 392; found 392.; [alpha] 21D = +17. 6 (c 1.0, CHCl3), 24621-61-2

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. 24621-61-2, We look forward to the emergence of more reaction modes in the future.

Reference£º
Patent; POSTECH FOUNDATION; WO2004/63208; (2004); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Discovery of 1,5-Diphenylpenta-1,4-dien-3-one

According to the analysis of related databases, 538-58-9, the application of this compound in the production field has become more and more popular.

Adding a certain compound to certain chemical reactions, such as: 538-58-9,1,5-Diphenylpenta-1,4-dien-3-one, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound 538-58-9,538-58-9

General procedure: General procedure: A mixture of 8a (70.3 mg, 0.3 mmol) and 1a (172.2 mg, 0.36 mmol) in DMSO (2.0 mL) was stirred under nitrogen atmosphere for 5 min at room temperature. Then DBU (0.065 mL, 0.45 mmol), followed by DMSO (1 mL), was added and the resulting mixture was heated to 80 C in N2 atmosphere. After the reaction was complete, the mixture was filtered through a thin layer (30 mm) of silica gel (100-200 mesh) and washed with DCM. The filtrate was concentrated under reduced pressure and the residue was purified by flash chromatography (PE/EtOAc=60/1) to afford 11a (72.1 mg, 76%).

According to the analysis of related databases, 538-58-9, the application of this compound in the production field has become more and more popular.

Reference£º
Article; Shu, Zhen-Cao; Zhu, Jian-Bo; Liao, Saihu; Sun, Xiu-Li; Tang, Yong; Tetrahedron; vol. 69; 1; (2013); p. 284 – 292;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Discovery of 4254-15-3

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, (S)-Propane-1,2-diol.

As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 4254-15-3,(S)-Propane-1,2-diol, This compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below.4254-15-3

To a stirred solution of (A)-propane-l,2-diol (5 g, 65.7 mmol) in anhydrous DCM (40 mL) at 0 C, was added imidazole (4.47 g, 65.7 mmol), followed by TBDMS-C1 (10.89 g, 72.3 mmol). After being stirred at room temperature for 4 h, the reaction mixture was cooled to 0C, and partitioned between sodium bicarbonate solution (50 ml) and DCM (200 mL). The organic layer was washed with EhO, and saturated NaCl solution, dried over anhydrous Na2S04, filtered and concentrated under reduced pressure fV)- l -((/tW-butyl dimethyl si lyl)oxy)propan-2-ol ^2 g, 63.0 mmol, 96% ) as colourless oil. NMR (400 MHz, chloroform-^ d ppm 3.73 – 3.88 (m, 1H), 3.51 – 3.65 (m, 1H), 3.29 – 3.46 (m, 1H), 2.36 – 2.56 (m, 1H), 1.12 (d, J=6.53 Hz, 3H), 0.90 – 0.96 (m, 9H), 0.06 – 0.13 (m, 6H).

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, (S)-Propane-1,2-diol.

Reference£º
Patent; BRISTOL-MYERS SQUIBB COMPANY; BALOG, James Aaron; SEITZ, Steven P.; WILLIAMS, David K.; ANDAPPAN MURUGAIAH SUBBAIAH, Murugaiah; (191 pag.)WO2019/136112; (2019); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Continuously updated synthesis method about (S)-Butane-1,3-diol

According to the analysis of related databases, (S)-Butane-1,3-diol, the application of this compound in the production field has become more and more popular.

In the chemical reaction process,reaction time,type of solvent,can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product.An updated downstream synthesis route of 24621-61-2,(S)-Butane-1,3-diol, as follows.24621-61-2

Example 63 (R)-3- {2-CHLORO-4- [3- (4-CHLORO-2-PHENOXY-PHENOXY)-BUTOXY]-PHENYL}-PROPIONIC acid Step A (S) -Acetic acid 3-hydroxy-butyl ester; A mixture of (S)- (+)-1, 3-butanediol (10.0 g, 0.1 mol) and 2,4, 6-collidine (27 g, 0.2 mol) in DCM (100 mL) is cooled to-78 C. The reaction is then treated dropwise with acetyl chloride (10.4 g, 0.13 mol), and stirred for 2hr AT-78 C. The reaction is then allowed to warm to rt and stir for an additional hour. The reaction is then quenched with IN HCl and extracted with DCM. The organic layer is separated, washed with brine, and dried over NA2SO4. The organic is filtered, and the solvent is removed to afford 9.77 g (66%) of acetic acid 3-hydroxy-butyl ESTER. IH NMR (400 MHz, CDC13) ; MS (ES+) NILZ mass calcd for C6HI203 132, found 133 (M + 1)., 24621-61-2

According to the analysis of related databases, (S)-Butane-1,3-diol, the application of this compound in the production field has become more and more popular.

Reference£º
Patent; ELI LILLY AND COMPANY; WO2005/19151; (2005); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Sources of common compounds: 24621-61-2

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles. 24621-61-2, other downstream synthetic routes, hurry up and to see.

In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact.24621-61-2,(S)-Butane-1,3-diol, it is a common compound, a new synthetic route is introduced below.24621-61-2

To a solution of commercial available (s)-3-hydroxy butanol (10 g, Aldrich) in 50 mL of DMF, TsOH (20 mg, catalytic) and MeOPhCH (OMe) 2 (24 g) were added. After 3h at 35 C on a rotovap with slight vacuum, it was cooled and quenched with aq. Sat. NaHC03. The mixture was extracted with EtOAc (3x). The organic layers were washed with brine (2x), dried and concentrated. The crude product was evaporated with toluene (3x). [0230] The crude product was dissolved in 700 mL of CH2CI2. At 0 C, DIBAL-H solution (200 mL, 1.0 M, excess) was added. The reaction was warmed to room temperature overnight. Then it was quenched with methanol (50 mL), sat. Na2S04 at 0 C. The mixture was diluted with Et20 (1. 5L). After stirred for 5h, it was filtered through a pad of celite. The filtrate was concentrated to give an oil. The oil was purified on silica gel with Hexanes/EtOAc, 10: 1,6 : 1,3 : 1, and 1: 1 to give 24 g of desired product, 343-YW-203

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles. 24621-61-2, other downstream synthetic routes, hurry up and to see.

Reference£º
Patent; EISAI CO. LTD.; WO2003/76424; (2003); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate