Discovery of 19132-06-0

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, (2S,3S)-Butane-2,3-diol.

As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 19132-06-0,(2S,3S)-Butane-2,3-diol, This compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below.19132-06-0

To a 500-mL, 3-necked round-bottomed flask (equipped with a water- cooled reflux condenser and an HCI trap) was added (2s,3s)-(-f-)-2.3-butanediol (Aldrich, Milwaukee Wisconsin)(1500 nil, 166 mniol) and CCI4 (120 ml). Thionyl chloride. reagentplus (14.57 ml, 200 mmoi) was then added drop wise viaa syringe over a period of 20 minutes and the resulting mixture was heated to98 C for 45 minutes, then it was allowed to cool to room temperature. Rf ofintermediate == 0.42 eluting with 50% EtOAc in heptanes; use KMNO4 to visualizecompound, The reaction mixture was then cooled in an ice-water bath. MeCN(120 mL) and water (150 rnL) were added followed by ruthenium(111) chloride(0.035g. 0.166 nunol). Sodium periodate (53.4 g, 250 rnmol) was then addedslowly portion wise over 30 minutes. The resulting biphasic brown mixture was stirred vigorously whie allowed to reach room temperature for a period of 1.5 hour (internal temperature never increased above room temperature). TLC (50% EtOAc in heptanes) showed complete conversion. The crude mixture was thenpoured into ice water and extracted twice with 300 ml of diethyl ether. The combined organic layers were washed once with 200 ml of saturated sodium bicarbonate, washed once with 200 nil of brine, dried over sodium sulfate and concentrated by rotary evaporation to give (4S.5 S)-4,5-dimethyi- 1,3,2- dioxathiolane 2,2-dioxide (21.2 g, 139 mmoi) as a red oil.

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, (2S,3S)-Butane-2,3-diol.

Reference£º
Patent; AMGEN INC.; BROWN, Sean P.; BEDKE, David Karl; DEGRAFFENREID, Michael R.; FU, Jiasheng; LI, Zhihong; GONZALEZ LOPEZ DE TURISO, Felix; GONZALEZ BUENROSTRO, Ana; GRIBBLE, Jr., Michael W.; JOHNSON, Michael G.; KOHN, Todd J.; LI, Kexue; LI, Yunxiao; LIZARZABURU, Mike Elias; REW, Yosup; TAYGERLY, Joshua; WANG, Yingcai; YAN, Xuelei; YU, Ming; ZHU, Jiang; ZANCANELLA, Manuel; JIAO, Xian Yun; ZHU, Liusheng; WANG, Xianghong; MEDINA, Julio C.; DUQUETTE, Jason A.; HOUZE, Jonathan B.; VIMOLRATANA, Marc; CARDOZO, Mario G.; CHENG, Alan C.; (2426 pag.)WO2017/147410; (2017); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Extended knowledge of (S)-Propane-1,2-diol

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, (S)-Propane-1,2-diol.

Researchers who often do experiments know that organic synthesis is a process of preparing more complex target molecules from simple raw materials through one or more chemical reactions. Generally, it requires fewer steps,and cheap raw materials.4254-15-3,A new synthetic method of this compound is introduced below.4254-15-3

Example 33 : (2R, 75R)-2-[(l-Aminoisoquinolin-6-yl)amino]-8-fluoro-7- {[(25)-l- hydroxypropan-2-yl]oxy } -4, 15,20-trimethyl- 13 -oxa-4, 1 1- diazatricyclo[14.2.2.16, 10]henicosa-l(18),6,8, 10(21), 16, 19-hexaene-3, 12-dione; trifluoroacetic acid [00356] To a solution of (s)-(+)-l,2-propanediol (2.0 g, 26.3 mmol) in DMF (5 mL) was added TBS-C1 (5.94 g, 39.4 mmol) and imidazole (2.147 g, 31.5 mmol). The reaction was stirred at 25 ¡ãC for 18 h. The reaction mixture was partitioned between ethyl acetate and sat. ammonium chloride. The organic phase was washed with sat. ammonium chloride and brine, dried (MgS04) and concentrated in vacuo. The crude product was purified by flash chromatography to give 33A (4.0 g, 80percent yield) as a colorless oil. 33B: (5)-Benzyl 2-((l-((tert-butyldimethylsilyl)oxy)propan-2-yl)oxy)-3-fluoro-5- nitrobenzyl(methyl)carbamate [00357] To a solution of 27B (400 mg, 1.197 mmol), 33A (251 mg, 1.316 mmol) and triphenylphosphine (345 mg, 1.316 mmol) in THF (10 mL) at 0 ¡ãC, was added DIAD (0.256 mL, 1.316 mmol) dropwise. The reaction mixture was allowed to slowly warm to rt and stirred for 16 h, then was concentrated. The crude product was purified by flash chromatography (0 to 40percent ethyl acetate/hexanes) to give 33B (577 mg, 1.139 mmol, 95percent yield) as colorless oil. MS (ESI) m/z: 507.1 [M+1]+. H MR (400 MHz, chloroform-d) delta ppm 7.78 – 7.94 (2 H, m) 7.27 – 7.43 (5 H, m) 5.17 (2 H, d, J=20.1 Hz) 4.46 – 4.74 (3 H, m) 3.65 – 3.81 (2 H, m) 2.97 (3 H, d, J=15.8 Hz) 1.31 (3 H, t, J=7.0 Hz) 0.81 (9 H, d, J=7.0 Hz) -0.05 – 0.04 (6 H, m) rotamers. 33C: (S)-4-((l-((tert-Butyldimethylsilyl)oxy)propan-2-yl)oxy)-3-fluoro-5- ((methylamino)methyl)aniline [00358] To a degassed solution of 33B (573 mg, 1.131 mmol) in MeOH (10 mL), was added 10percent Pd-C (50 mg, 0.047 mmol). The mixture was evacuated and flushed with H2 (3X), then was stirred under an atmosphere of H2 for 8 h. The mixture was filtered and concentrated to give 33C (382 mg, 1.115 mmol, 99percent yield) as a pale brown oil. MS (ESI) m/z: 343.1 [M+l]+. PI MR (400 MHz, chloroform-d) delta ppm 6.40 (1 H, d, J=1.8 Hz) 6.33 (1 H, dd, J=12.5, 2.8 Hz) 4.20 (1 H, sxt, J=5.7 Hz) 3.62 – 3.79 (4 H, m) 3.53 (2 H, br. s.) 2.40 (3 H, s) 1.25 (3 H, d, J=6.3 Hz) 0.89 (9 H, s) 0.05 (6 H, s). 33D: tert-Butyl N- {6-[({[(5-amino-2- { [(25)- l-[(tert-butyldimethylsilyl)oxy]propan-2- yl]oxy } -3 -fluorophenyl)methyl](methyl)carbamoyl} ( {4-[(2R)- 1 -hydroxypropan-2-yl]-3 – methylphenyl} )methyl)amino]isoquinolin- 1 -yl} -N-[(tert-butoxy)carbonyl]carbamate [00359] To Intermediate 5 (100 mg, 0.515 mmol), Intermediate 1 (185 mg, 0.515 mmol), and glyoxylic acid monohydrate (47.4 mg, 0.515 mmol), were added DMF (6.00 mL) and acetonitrile (6 mL). The mixture was stirred at 80 ¡ãC for 1 h, then was cooled to rt. To the mixture were added sequentially 33C (201 mg, 0.587 mmol), DMF (6.00 mL), TEA (0.215 mL, 1.546 mmol) and BOP (251 mg, 0.567 mmol). The reaction mixture was stirred at rt for 1 h, then was diluted with H20 and extracted with EtOAc (3X). The extract was washed with brine, dried ( a2S04) and concentrated. The crude product was purified by flash chromatography (1 to 15percent MeOH/methylene chloride) to give 33D (422 mg, 0.474 mmol, 92percent yield) as an orange foam. MS (ESI) m/z: 890.3 [M+l]+. H MR: complicated due to presence of diastereomers and amide rotamers. Example 33 [00360] To a solution of 33D (417 mg, 0.468 mmol) in dichloromethane (10 mL) and acetonitrile (5 mL) at 0 ¡ãC, was added phosgene (20percent in toluene, 0.243 mL, 0.492 mmol) dropwise. The mixture was stirred at 0 ¡ãC for 20 min, then was removed from the cooling bath and bubbled with Ar for 20 min. This mixture was added dropwise via a syringe pump into a solution of TEA (0.392 mL, 2.81 mmol) in dichloromethane (190 mL) over 5 h. The reaction mixture was allowed to stir at rt for 11 h, and then concentrated. The crude product was purified by flash chromatography (1 to 15percent MeOH/methylene chloride) to give a mixture of diastereoisomers. The diastereomers were separated by a prep chiral HPLC (R,R-Whelk-0 column 21.1 x 250 mm). The desired fractions were combined and concentrated. The residue was treated with TFA (4 mL) for 15 min. The reaction mixture was concentrated and purified by prep HPLC to give Example 33 (52.9 mg, 0.074 mmol, 31.4percent yield) white solid. MS (ESI) m/z: 602.2 [M+l]+. NMR (400 MHz, methanol-d4) delta ppm 8.05 (1 H, d, J=9.3 Hz) 7.64 (1 H, dd, J=7.8, 1.8 Hz) 7.44 (1 H, d, J=7.8 Hz) 7.31 (1 H, d, J=7.0 Hz) 7.18 – 7.23 (2 H, m) 6.91 (1 H, d, J=7.3 Hz) 6.83 (1 H, d, J=2.3 Hz) 6.53 (1 H, dd, J=12.4, 2.4 Hz) 5.73 (1 H, s) 5.66 (1 H, br. s.) 5.37 (1 H, d, J=17.1 Hz) 4.65 (1 H, t, J=11.0 Hz) 4.27 – 4.38 (1 H, m, J=5.7, 5.7, 5.7, 5.7, 5.4 Hz) 4.06 (1 H, d, J=17.3 Hz) 3.96 (1 H, dd, J=10.8, 4.3 Hz) 3.63 (2 H, d, J=4.8 Hz) 3.43 – 3.55 (1 H, m) 3.27 (3 H, s) 2.34 (3 H, s) 1.30 (3 H, d, J=7.0 Hz) 1.27 (3 H, d, J=6.3 Hz). Analytical HPLC (low pH, 254 nM): Sunfir…

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, (S)-Propane-1,2-diol.

Reference£º
Patent; BRISTOL-MYERS SQUIBB COMPANY; ZHANG, Xiaojun; GLUNZ, Peter W.; PRIESTLEY, Eldon Scott; JOHNSON, James, A.; WURTZ, Nicholas, Ronald; LADZIATA, Vladimir; WO2013/184734; (2013); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Discovery of (S)-Propane-1,2-diol

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. (S)-Propane-1,2-diol, We look forward to the emergence of more reaction modes in the future.

As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 4254-15-3,(S)-Propane-1,2-diol, This compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below.4254-15-3

(1) Feeding800 kg of S-propylene glycol, 1600 kg of dimethyl carbonate and 8 kg of sodium methoxide solution were added to the reaction vessel, and heating and stirring were started.The sodium methoxide solution is a 30percent sodium methoxide/methanol solution;The S-propanediol has a propylene glycol content of 99.5percent, a moisture content of 0.5percent, and a specific rotation of ?16.80-17. (2) Temperature rise reactionFirst stage heating reaction The temperature is raised to 60-65 ¡ã C, at which time a solution (mainly methanol, a small portion of dimethyl carbonate) is distilled off, received in the receiving tank, and the solution is evaporated; Second stage heating reactionThereafter, after about 12 hours, the temperature is raised from 65 ¡ã C to 90 ¡ã C, the solution is kept distilled, and the product is distilled as a by-product alcohol-based fuel (methanol and dimethyl carbonate); Third stage temperature rise reactionHeating was continued, and the temperature was raised from 90 ¡ã C to 115 ¡ã C for 8 hours, and the heating was stopped. (3) Cooling downThe temperature was lowered from 115 ¡ã C to 60 ¡ã C. The temperature in the reaction vessel is ?90 ¡ã C, and the alcohol-based fuel (mixed solution of methanol and dimethyl carbonate) is distilled off; most of the steam distilled out at >90 ¡ã C is dimethyl carbonate, and a small amount of methanol is used as a reaction raw material for recovery. (4) Decompression reaction under reduced pressureStart decompression under reduced pressure, using vacuum distillation, vacuum degree ? -0.08mpa, the temperature rises at a rate of 0.2 ¡ã C per minute,Continue to distill the solution (a mixture of methanol and dimethyl carbonate),Keep the solution evaporated, when the temperature rises to 120 ¡ã C, basically no solvent comes out at this time,The pressure reduction and desolvation can be stopped, and the temperature is lowered; the remaining liquid in the reaction tank is (S)-propylene carbonate. In the crude (S)-propylene carbonate, the (S)-propylene carbonate content is 97percent or more. From the start of the preparation to the preparation of the crude product, the reaction time was 25 hours. (5) Distillation reactionTransfer the remaining liquid after decompression and decompression to the rectification bottle, and turn on the heating and stirring.Vacuuming, ensuring a vacuum degree ? 0.1Mpa, starting the steaming before the fraction, steaming out about 100kg of the former fraction, and then transferring the finished product.The materials in the rectification tank were all distilled off, the rectification was stopped, and (S)-propylene carbonate was collected. The (S)-propylene carbonate has the following quality indicators:1. Appearance: colorless clear liquid;2, SPC chemical purity content (percent): ? 99.8;3, SPC optical purity content (percent): ? 99.4;4. SPC isomer content (percent): ? 0.6;5. Moisture (percent): ? 0.1; The yield of the finished SPC is 97percent; the specific rotation is -2 to -3;

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. (S)-Propane-1,2-diol, We look forward to the emergence of more reaction modes in the future.

Reference£º
Patent; Weifang Huitao Chemical Co., Ltd.; Liu Jianwei; Zhang Quansheng; Wei Lanxing; Hua Xian; (6 pag.)CN109369401; (2019); A;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Research on new synthetic routes about (S)-Propane-1,2-diol

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about 4254-15-3.

The major producers of chemicals have been the Europe, Japan and China. Due to the growing call for a cleaner, greener environment, people will have to find innovative ways to maintain their relevance. Here is a downstream synthesis route of the compound 4254-15-3,4254-15-3

To a stirred solution of (A)-propane-l,2-diol (5 g, 65.7 mmol) in anhydrous DCM (40 mL) at 0 C, was added imidazole (4.47 g, 65.7 mmol), followed by TBDMS-C1 (10.89 g, 72.3 mmol). After being stirred at room temperature for 4 h, the reaction mixture was cooled to 0C, and partitioned between sodium bicarbonate solution (50 ml) and DCM (200 mL). The organic layer was washed with EhO, and saturated NaCl solution, dried over anhydrous Na2S04, filtered and concentrated under reduced pressure fV)- l -((/tW-butyl dimethyl si lyl)oxy)propan-2-ol ^2 g, 63.0 mmol, 96% ) as colourless oil. NMR (400 MHz, chloroform-^ d ppm 3.73 – 3.88 (m, 1H), 3.51 – 3.65 (m, 1H), 3.29 – 3.46 (m, 1H), 2.36 – 2.56 (m, 1H), 1.12 (d, J=6.53 Hz, 3H), 0.90 – 0.96 (m, 9H), 0.06 – 0.13 (m, 6H)., 4254-15-3

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about 4254-15-3.

Reference£º
Patent; BRISTOL-MYERS SQUIBB COMPANY; BALOG, James Aaron; SEITZ, Steven P.; WILLIAMS, David K.; ANDAPPAN MURUGAIAH SUBBAIAH, Murugaiah; (191 pag.)WO2019/136112; (2019); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Sources of common compounds: (S)-Propane-1,2-diol

According to the analysis of related databases, 4254-15-3, the application of this compound in the production field has become more and more popular.

Adding a certain compound to certain chemical reactions, such as: 4254-15-3,(S)-Propane-1,2-diol, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound 4254-15-3,4254-15-3

To a yellow foamy solid 4 (131.77 g, 295.11 mmol) was added (S)-(+)-1,2-propanediol (296.0 ml) and purified water (866.0 ml).Stir and slowly cool after dissolving.Stirring crystallized, filtered and drained to give a crude product 5;The crude product 5 was directly recrystallized from methyl tert-butyl ether (900 ml) without drying.After filtering to get a fine 5;Without drying, recrystallize twice with methyl tert-butyl ether (900 ml) and filter.The filter cake is washed twice with methyl tert-butyl ether.After drying, it is dried in a drying oven at 45-50C.The second boutique 5 (116.37g, 231.22mmol),HPLC purity 99.94% [HPLC normalization method:Column Agilent SB-C18 (250¡Á4.6mm 5mum);The mobile phase is mobile phase A with acetonitrile-water-trifluoroacetic acid (30:70:0.025).The mobile phase B was acetonitrile-water-trifluoroacetic acid (90:10:0.025).Gradient elution (0?20 min: A 100%?70%, 20?40 min: A 70%?10%, 40?50 min: A 10%, 50?50.1 min:A 100%, 50.1 ? 60min: A 100%,) detection wavelength 220nm;Column temperature 30C; flow rate, 1.0 ml/min], yield 78.35%.

According to the analysis of related databases, 4254-15-3, the application of this compound in the production field has become more and more popular.

Reference£º
Patent; Shanghai Modern Pharmaceutical Co., Ltd.; Zhang Guang; Shen Gang; Zou Lingyan; Fu Min; Wu Miaomiao; (13 pag.)CN107488156; (2017); A;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Extended knowledge of 1,5-Diphenylpenta-1,4-dien-3-one

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, 1,5-Diphenylpenta-1,4-dien-3-one.

Researchers who often do experiments know that organic synthesis is a process of preparing more complex target molecules from simple raw materials through one or more chemical reactions. Generally, it requires fewer steps,and cheap raw materials.538-58-9,A new synthetic method of this compound is introduced below.538-58-9

538-58-9, General procedure: To a stirred solution of alpha,beta-unsaturated carbonyl compound (1 mmol) in DCM was added thiophenol (2.5 mmol, 275 mg) followed by sodium metal (2.5 mmol, 57.5 mg) at room temperature. The reaction mixture was stirred appropriate time given in Table 3. TLC monitoring, after completion of reaction filtered excess amount of sodium then the reaction mixture was quenched with water and extracted with DCM (3 ¡Á 8 ml), washed with brine solutions (10 ml). The combined organic layers dried over anhydrous Na2SO4 and the solvent evaporated in vacuo. Pure sulfide was obtained by recrystallization from methanol.

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, 1,5-Diphenylpenta-1,4-dien-3-one.

Reference£º
Article; Konduru, Naveen Kumar; Dey, Sunita; Sajid, Mohammad; Owais, Mohammad; Ahmed, Naseem; European Journal of Medicinal Chemistry; vol. 59; (2013); p. 23 – 30;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Continuously updated synthesis method about 24621-61-2

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. 24621-61-2, We look forward to the emergence of more reaction modes in the future.

In the chemical reaction process,reaction time,type of solvent,can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product.An updated downstream synthesis route of 24621-61-2,(S)-Butane-1,3-diol, as follows.24621-61-2

(S)-(+)-Butane-1 ,3-diol (3.00 mmol, 0.270 g) was added to a stirred solution of imidazole (5.99 mmol, 0.41 g) and tert-butyldimethylsilyl chloride (3.00 mmol, 0.45 g) at room temperature. After six hours at room temperature water (50 mL) was added and extracted twice with dichloromethane (20 mL). The combined organic extracts were washed with brine, dried (sodium sulfate) and concentrated in vacuo to yield (S)-4- (tert-butyldimethylsilyloxy)butan-2-ol (0.654 g).

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. 24621-61-2, We look forward to the emergence of more reaction modes in the future.

Reference£º
Patent; N.V. ORGANON; MAN de,, Adrianus Petrus Antonius; REWINKEL,, Johannes Bernardus Maria; JANS,, Christiaan Gerardus Johannes Maria; RAAIJMAKERS,, Hans Cornelis Andreas; WIJKMANS,, Jacobus Cornelis Henricus Maria; WO2011/95556; (2011); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Discovery of (S)-Butane-1,3-diol

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. (S)-Butane-1,3-diol, We look forward to the emergence of more reaction modes in the future.

In the chemical reaction process,reaction time,type of solvent,can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product.An updated downstream synthesis route of 24621-61-2,(S)-Butane-1,3-diol, as follows.24621-61-2

General procedure: (R)-Ethyl 3-hydroxybutyrate (2.1 g, 16 mmol) and (R)-1,3 butanediol(1.0 g, 11 mmol) were combined and incubated with CAL-B (0.2 g,400 U) at 80 torr without solvent in a rotary evaporator. The reaction was monitored by withdrawing 5 muL portions of the reaction mixture,which were dissolved in 1.0 mL methanol for analysis by GC-MS. Upon consumption of the diol, the reaction mixture was taken up in dichloromethane,the beads were filtered and washed, and the solventremoved by rotary evaporation. Excess (R)-ethyl 3-hydroxybutyratewas removed by heating to 60 deg C under reduced pressure (1 torr).The residue was suspended in ethyl acetate, treated with activated carbon and filtered to yield (R)-3-hydroxybutyryl-(R)-3-hydroxybutyrateas a clear oil (1.2 g, 62%).

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. (S)-Butane-1,3-diol, We look forward to the emergence of more reaction modes in the future.

Reference£º
Article; Budin, Noah; Higgins, Erin; DiBernardo, Anthony; Raab, Cassidy; Li, Chun; Ulrich, Scott; Bioorganic Chemistry; vol. 80; (2018); p. 560 – 564;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Discovery of 19132-06-0

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, (2S,3S)-Butane-2,3-diol.

As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 19132-06-0,(2S,3S)-Butane-2,3-diol, This compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below.19132-06-0

To a 500-mL, 3-necked-RBF (equipped with a H20-cooled reflux condenser and an HCl trap) was added (2s,3s)-(+)-2,3-butanediol (Aldrich; 15.00 mL, 166 mmol) and CC14 (120 mL). SOCl2, reagentplus (14.57 mL, 200 mmol) was then added drop wise via a syringe over a period of 20 min and the resulting mixture was heated to 98C for 45 min, then allowed to cool to rt. The reaction mixture was then cooled in an ice/H20 bath, MeCN (120 mL) and H20 (150 mL) were added followed by ruthenium(III) chloride (0.035 g, 0.166 mmol). Sodium periodate (53.4 g, 250 mmol) was then added slowly portion wise over 30 min. The resulting biphasic brown mixture was stirred vigorously while allowed to reach rt for a period of 1.5 h (internal temperature never increased above rt). TLC (50% EtOAc in heptanes) showed complete conversion. The crude mixture was then poured into ice H20 and extracted twice with 300 mL of Et20. The combined organic layers were washed once with 200 mL of sat. sodium bicarbonate, washed once with 200 mL of brine, dried over Na2S04; and concentrated by rotary evaporation to give (4S,5S)-4,5-dimethyl-l,3,2- dioxathiolane 2,2-dioxide (21.2 g, 139 mmol) as a red oil.

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, (2S,3S)-Butane-2,3-diol.

Reference£º
Patent; AMGEN INC.; BROWN, Sean P.; LI, Yunxiao; LIZARZABURU, Mike Elias; LUCAS, Brian S.; PARAS, Nick A.; TAYGERLY, Joshua; VIMOLRATANA, Marc; WANG, Xianghong; YU, Ming; ZANCANELLA, Manuel; ZHU, Liusheng; GONZALEZ BUENROSTRO, Ana; LI, Zhihong; (279 pag.)WO2016/33486; (2016); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Research on new synthetic routes about (S)-Butane-1,3-diol

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about (S)-Butane-1,3-diol.

24621-61-2,The major producers of chemicals have been the Europe, Japan and China. Due to the growing call for a cleaner, greener environment, people will have to find innovative ways to maintain their relevance. Here is a downstream synthesis route of the compound 24621-61-2

Representative example 44: Synthesis of 1-((R)-3-(2-(4-hydroxy-1-((2R,3S)-2- propyl-1-(3-(trifluoromethyl)picolinoyl)-3-(5-(trifluoromethyl)thiophen-3- yloxy)piperidine-3-carbonyl)piperidin-4-yl)phenoxy)butyl)cyclobutanecarboxylic acid A31. Step 1: To a 0C DCM (100 mL) solution of (S)-(+)-1 ,3-Butanol (7g, 77.6 mmol) containing Et^N (14 mL, 1.3equiv) was added drop wise a DCM solution (60 mL) of TsCI (1.05 equiv, 15g). Reaction was warmed-up to Rt and stirred overnight. After 18 hours, the DCM layer was washed with HCI 1.0N (X2), then NaHC03, then brine. Organic layer was dried over MgS04, filtered and concentrated down to 15 g of crude oil. The residue was purified by silica gel chromatography (10% to 40% EtOAc in hexanes) to provide 13 g (69% yield) of (S)-3-hydroxybutyl 4- methylbenzenesulfonate 94.

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about (S)-Butane-1,3-diol.

Reference£º
Patent; SCHERING CORPORATION; BOGEN, Stephane, L.; MA, Yao; WANG, Yaolin; LAHUE, Brian Robert; NAIR, Latha, G.; SHIZUKA, Manami; VOSS, Matthew Ernst; KIROVA-SNOVER, Margarita; PAN, Weidong; TIAN, Yuan; KULKARNI, Bheemashankar, A.; GIBEAU, Craig, R.; LIU, Yuan; SCAPIN, Giovanna; RINDGEN, Diane; DOLL, Ronald, J.; GUZI, Timothy, J.; HICKLIN, Danny, J.; NOMEIR, Amin; SEIDEL-DUGAN, Cynthia; SHIPPS, Gerald, W., Jr.; MACCOSS, Malcolm; WO2011/46771; (2011); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate