The origin of a common compound about 24621-61-2

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,24621-61-2,(S)-Butane-1,3-diol,its application will become more common.

A common heterocyclic compound, 24621-61-2,(S)-Butane-1,3-diol, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 24621-61-2

Example 1 Preparation of (3S)-1-p-Toluenesulfonyloxy-3-triethylsilyloxy-butane (2)To a stirred solution of the (S)-(+)-1,3-butanediol 1 (1 g, 11.1 mmol), DMAP (30 mg, 0.25 mmol) and Et3N (4.6 mL, 3.33 g, 33 mmol) in anhydrous methylene chloride (20 mL) p-toluenesulfonyl chloride (2.54 g, 13.3 mmol) was added at 0 C. The reaction mixture was stirred at 4 C. for 22 h. Methylene chloride was added and the mixture was washed with water, dried (Na2SO4) and concentrated under reduced pressure. A residue was chromatographed on silica gel with hexane/ethyl acetate (8:2, then 1:1) to afford the tosylate (2.31 g, 85% yield) as a colorless oil.To a stirred solution of the tosylate (2.31 g, 9.5 mmol) and 2,6-lutidine (1.2 mL, 1.12 g, 10.5 mmol) in anhydrous methylene chloride (15 mL) triethylsilyl trifluoromethanesulfonate (2.1 mL, 2.51 g, 9.5 mmol) was added at -50 C. The reaction mixture was allowed to warm to room temperature (4 h) and stirring was continued for additional 20 h. Methylene chloride was added and the mixture was washed with water, dried (Na2SO4) and concentrated under reduced pressure. A residue was chromatographed on silica gel with hexane/ethyl acetate (97:3) to afford the product 2 (2.71 g, 80% yield) as a colorless oil:[alpha]D+18.0 (c 2.38, CHCl3); 1H NMR (400 MHz, CDCl3) delta 7.77 (2H, d, J=8.2 Hz, o-HTs), 7.33 (2H, d, J=8.2 Hz, m-HTs), 4.10 (2H, t, J=6.1 Hz, 1-H2), 3.90 (1H, m, 3-H), 2.43 (3H, s, MeTs), 1.72 (2H, m, 2-H2), 1.10 (3H, d, J=6.2 Hz, 4-H3), 0.88 (9H, t, J=8.0 Hz, 3¡ÁSiCH2CH3), 0.50 (6H, q, J=8.0 Hz, 3¡ÁSiCH2CH3); 13C NMR (100 MHz) delta 144.62 (s, p-CTs), 133.03 (s, i-CTs), 129.72 (d, m-CTs), 127.82 (d, o-CTs), 67.78 (t, C-1), 64.46 (d, C-3), 38.47 (t, C-2), 23.82 (q, C-4), 21.52 (q, MeTs), 6.71 (q, SiCH2CH3), 4.77 (t, SiCH2CH3); MS (EI) m/z 359 (5, MH+), 329 (87, M+-C2H5), 259 (100), 233 (54), 197 (50), 179 (74), 163 (40), 149 (48), 135 (38), 115 (53), 91 (71); exact mass calculated for C15H25O4SSi (M+-C2H5) 329.1243, found 329.1239.

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,24621-61-2,(S)-Butane-1,3-diol,its application will become more common.

Reference£º
Patent; DeLuca, Hector F.; Clagett-Dame, Margaret; Plum, Lori A.; Chiellini, Grazia; Grzywacz, Pawel; US2009/170821; (2009); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Some scientific research about (S)-Butane-1,3-diol

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,24621-61-2,(S)-Butane-1,3-diol,its application will become more common.

24621-61-2 A common heterocyclic compound, 24621-61-2,(S)-Butane-1,3-diol, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

S- (+)-1, 3-butanediol (96 mg, 1.065 mmol) in 3 ml of pyridine was cooled in an ice-water bath and 4,4′-dimethoxytrityl chloride (430 mg, 1.27 mmol) was added thereto. The resulting mixture was stirred for 6 hours at room temperature. 10 ml of 5% NAHCO3 was added thereto and the resulting solution was extracted with 15 ml of ethyl acetate. The organic layer was dried over MGS04 and evaporated under a reduced pressure. The resulting yellow liquid residue was purified by silica gel column chlomatography (eluent-ethyl acetate: hexane = 1: 3) to obtain the title compound (401 mg, 1.02 mmol) in a yield of 96%. Rf= 0.3 (ethyl acetate: Hexane = 1 : 2); IR (NACI) nu (cm-1) 3462, 3059, 3034, 2959, 2927, 2848,2835, 1607,1508, 1250; 1H NMR (Acetone-d6) delta 7.49 (br, 1H), 7.46 (br, 1H), 7.36-7. 18 (m, 7H), 6.86 (t, 2H, J=2. 6Hz), 6.84 (t, 2H, J=2.6Hz), 3.93 (br, 1H), 3.73 (s, 6H), 3. 50 (br, 1H), 3.28-3. 14 (m, 2H), 1.73 (m, 2H), 1. 11 (d, 3H, J=6. 2Hz) ; 13C-NMR (75.5 MHz, Acetone-d6) delta 158. 1, 145. 3, 136. 1, 136.0, 129.5, 127. 6, 127.2, 126. 1, 112.5, 85. 4, 64. 2, 60. 6, 54. 2, 39.0, 23.1; MS-FAB (m/z): [M] + calcd for C25H28O4, 392; found 392.; [alpha] 21D = +17. 6 (c 1.0, CHCl3)

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,24621-61-2,(S)-Butane-1,3-diol,its application will become more common.

Reference£º
Patent; POSTECH FOUNDATION; WO2004/63208; (2004); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

The origin of a common compound about 538-58-9

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,538-58-9,1,5-Diphenylpenta-1,4-dien-3-one,its application will become more common.

A common heterocyclic compound, 538-58-9,1,5-Diphenylpenta-1,4-dien-3-one, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 538-58-9

General procedure: To a solution of dialkyl phosphite (0.01 mol) in anhydrous tetrahydrofuran (30 mL),maintained under a nitrogen atmosphere, sodium (0.02 g) was added and the mixture was stirred at roomtemperature until complete dissolution of sodium. Diarylideneketone 1 (0.01 mol) was then added and themixture heated under reflux for 4 h. After cooling, the reaction mixture was diluted with water (50 mL)and extracted with CHCl3 (2 ¡Á 25 mL). The organic phase was dried over Na2SO4 and concentrated undervacuum. The obtained residue was chromatographed on a silica gel column using a mixture of Et2O andhexane 9:1 as an eluent.

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,538-58-9,1,5-Diphenylpenta-1,4-dien-3-one,its application will become more common.

Reference£º
Article; Lamouchi, Imen; Touil, Soufiane; Heterocycles; vol. 94; 5; (2017); p. 894 – 911;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Some scientific research about 1,5-Diphenylpenta-1,4-dien-3-one

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,538-58-9,1,5-Diphenylpenta-1,4-dien-3-one,its application will become more common.

538-58-9 A common heterocyclic compound, 538-58-9,1,5-Diphenylpenta-1,4-dien-3-one, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

General procedure: A solution of N,N-dimethyl barbituric acid (1) (2 mmol) and diarylidene acetone derivatives (2a-p) (2 mmol) in 10 mL of dry CH2Cl2 were charged into a 50 mL round bottom flask under inert atmosphere. Et2NH (2.5 mmol) was then added to the reaction mixture and stirred at room temperature for up to 1.5-2 h, until TLC showed complete consumption of both the reactants. After completion of the reaction, the crude product was directly subjected to column chromatography, using 100-200 mesh silica gel and ethyl acetate/n-hexane (2:8, v/v) as an eluent to afford the pure products 3a-p. The solid products were further crystallized from a mixture of CHCl3/n-heptane. 4.2.1 2,4-Dimethyl-7,11-diphenyl-2,4-diazaspiro[5.5]undecane-1,3,5,9-tetraone (3a) Diarylidene acetone 2a (468.2 mg, 2 mmol) reacted with compound 1 (312.1 mg, 2 mmol) according to GP1 yielded white solid spiro-product 3a (765 mg, 1.96 mmol, 98%); mp 125-127 C; 1H NMR (400 MHz, CDCl3) delta: 2.59 and 2.63 (dd, 2H, J = 15.36 Hz, 4.40 Hz, CH2(e)), 2.85 (s, 3H, -NCH3), 3.01 (s, 3H, -NCH3), 3.72 (t, 2H, J = 14.7 Hz, CH2(a)), 3.99 and 4.03 (dd, 2H, J = 14.7 Hz, 4.40 Hz, CH), 7.06-7.08 (m, 4H, Ar-H), 7.21-7.26 (m, 6H, Ar-H); 13C NMR (100 MHz, CDCl3) delta: 27.98, 28.39, 42.99, 50.55, 60.95, 127.56, 128.69, 128.94, 137.17, 149.70, 169.04, 170.71, 208.29; IR (KBr, cm-1) numax = 2959, 2925, 1716, 1675, 1484, 1422, 1381, 1125, 755, 706; [Anal. Calcd for C23H22N2O4: C, 70.75; H, 5.68; N, 7.17; Found: C, 70.69; H, 5.65; N, 7.01]; LC/MS (ESI, m/z): [M+], calculated 390.21, C23H22N2O4 found 390.16; CCDC-1007513.

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,538-58-9,1,5-Diphenylpenta-1,4-dien-3-one,its application will become more common.

Reference£º
Article; Barakat, Assem; Islam, Mohammad Shahidul; Al-Majid, Abdullah Mohammed; Ghabbour, Hazem A.; Fun, Hoong-Kun; Javed, Kulsoom; Imad, Rehan; Yousuf, Sammer; Choudhary, M. Iqbal; Wadood, Abdul; Bioorganic and Medicinal Chemistry; vol. 23; 20; (2015); p. 6740 – 6748;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

New downstream synthetic route of 538-58-9

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,1,5-Diphenylpenta-1,4-dien-3-one,538-58-9,its application will become more common.

A common heterocyclic compound, 538-58-9,1,5-Diphenylpenta-1,4-dien-3-one, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 538-58-9

General procedure: General procedure (GP): Dienones 2a-m (0.25 mmol) and diamide 1a or 1b (74 mg, 0.25 mmol)were dissolved in 10 mL of dry CH2Cl2 in a 25 mL round bottom flask. DBU (3 eq, 114 mg, 0.75 mmol)was added to the reaction, which was subsequently stirred for 2-3 h. After the reaction was completedas determined by TLC, the crude material was subjected to column chromatography using ethylacetate/n-hexane (2:3) to give the desired compounds 3a-m.

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,1,5-Diphenylpenta-1,4-dien-3-one,538-58-9,its application will become more common.

Reference£º
Article; Al-Majid, Abdullah Mohammed; Islam, Mohammad Shahidul; Atef, Saleh; El-Senduny, Fardous F.; Badria, Farid A.; Elshaier, Yaseen A. M. M.; Ali; Barakat, Assem; Motiur Rahman; Molecules; vol. 24; 7; (2019);,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

A new synthetic route of 4254-15-3

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,4254-15-3,(S)-Propane-1,2-diol,its application will become more common.

A common heterocyclic compound, 4254-15-3,(S)-Propane-1,2-diol, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 4254-15-3

The four (4) step reaction sequence starting from 103-1 and 103-2 (prepared as shown from S-(+)-1,2-propanediol (103-0)) provided Boc-T103a in a very good overall yield of 85%. The alternatively protected analogue Ddz-T103a was prepared using the same procedure with an overall yield of 55% [1.4 g Ddz(2RMe)opy18 was obtained starting from 1 g (5.8 mmol) of 103-1]. Synthesis of the Boc-T103b stereoisomer proceeds similarly, but starting from R-(-)-1,2-propanediol.TLC: Rf: 0.3 (100% EtOAc)

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,4254-15-3,(S)-Propane-1,2-diol,its application will become more common.

Reference£º
Patent; Tranzyme Pharma Inc.; US2008/194672; (2008); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

The origin of a common compound about 538-58-9

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,538-58-9,1,5-Diphenylpenta-1,4-dien-3-one,its application will become more common.

A common heterocyclic compound, 538-58-9,1,5-Diphenylpenta-1,4-dien-3-one, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 538-58-9

General procedure: In a general procedure, dibenzylidene acetone (1 mmol), N,N-dimethylbarbituric acid/barbituric acid/thiobarbituric acid(1 mmol) and 4 mL of ethanol:water (1:1) were taken in a 50 mL round-bottomed flask. 10 mol% of tetrabutyl ammonium bromide (TBAB) was added to the mixture, and the contents were stirred. The reaction mixture was refluxed and the progress of the reaction was monitored by TLC using ethyl acetate:petroleum ether (30:70) as eluent for disappearance of active methylene compounds. After completion of the reaction, the reaction mixture was allowed to cool to room temperature and diluted with water (5 mL). The solid obtained was filtered at pump and washed with water:ethanol (2:1). The product was recrystallized with ethanol. The products were characterized by their spectral data.

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,538-58-9,1,5-Diphenylpenta-1,4-dien-3-one,its application will become more common.

Reference£º
Article; Aggarwal, Komal; Khurana, Jitender M.; Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy; vol. 143; (2015); p. 288 – 297;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

New downstream synthetic route of 4254-15-3

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,(S)-Propane-1,2-diol,4254-15-3,its application will become more common.

A common heterocyclic compound, 4254-15-3,(S)-Propane-1,2-diol, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 4254-15-3

Under an atmosphere of argon, trifluoromethanesulfonic acid (485 muEpsilon; 822 mg; 5.47 mmol; 5.0 eq) was added dropwise at 0-5¡ãC (ice/brine bath) to a solution of l-[2-chloro-4-(4-chlorophenoxy)phenyl]-2-(5- fluoroimidazol-l-yl)ethanone (400 mg ; 1.09 mmol) and (2S)-propane-l,2-diol (3.33 g; 43.8 mmol; 40.0 eq) in anhydrous toluene (3.0 mL). The resulting mixture was allowed to warm up to room temperature, then refluxed for 20h. Thereafter the reaction mixture was allowed to cool down to room temperature, diluted with ethyl acetate, washed with saturated aqueous sodium bicarbonate, the combined organic layers were – – dried (MgSO i) and concentrated to dryness in vacuo. The residue was purified by chromatography over silica gel, eluted with a mixture of dichloromethane/methanol (100:0 to 90: 10). Evaporation of the solvents in vacuo afforded 271 mg (54percent) of l-[[2-[2-chloro-4-(4-chlorophenoxy)phenyl]-4-methyl-l,3-dioxolan-2- yl]methyl]-5-fluoro-imidazole (approx. 59:41 mixture of diastereoisomers) as a colourless solid. MS (ESI): 423.1 ([M+H]+)

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,(S)-Propane-1,2-diol,4254-15-3,its application will become more common.

Reference£º
Patent; BAYER CROPSCIENCE AKTIENGESELLSCHAFT; BAYER AKTIENGESELLSCHAFT; COQUERON, Pierre-Yves; BERNIER, David; GENIX, Pierre; MILLER, Ricarda; NAUD, Sebastien; WITTROCK, Sven; BRUNET, Stephane; KENNEL, Philippe; MEISSNER, Ruth; WACHENDORFF-NEUMANN, Ulrike; GOeRTZ, Andreas; (104 pag.)WO2018/60088; (2018); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Downstream synthetic route of 1,5-Diphenylpenta-1,4-dien-3-one

With the complex challenges of chemical substances, we look forward to future research findings about 1,5-Diphenylpenta-1,4-dien-3-one,belong chiral-oxygen-ligands compound

As a common heterocyclic compound, it belongs to quinuclidine compound,Quinuclidine-4-carboxylic acid hydrochloride,40117-63-3,Molecular formula: C8H14ClNO142,mainly used in chemical industry, its synthesis route is as follows.,538-58-9

General procedure: To a solution of dialkyl phosphite (0.01 mol) in anhydrous tetrahydrofuran (30 mL),maintained under a nitrogen atmosphere, sodium (0.02 g) was added and the mixture was stirred at roomtemperature until complete dissolution of sodium. Diarylideneketone 1 (0.01 mol) was then added and themixture heated under reflux for 4 h. After cooling, the reaction mixture was diluted with water (50 mL)and extracted with CHCl3 (2 ¡Á 25 mL). The organic phase was dried over Na2SO4 and concentrated undervacuum. The obtained residue was chromatographed on a silica gel column using a mixture of Et2O andhexane 9:1 as an eluent.

With the complex challenges of chemical substances, we look forward to future research findings about 1,5-Diphenylpenta-1,4-dien-3-one,belong chiral-oxygen-ligands compound

Reference£º
Article; Lamouchi, Imen; Touil, Soufiane; Heterocycles; vol. 94; 5; (2017); p. 894 – 911;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

A new synthetic route of (S)-Butane-1,3-diol

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,24621-61-2,(S)-Butane-1,3-diol,its application will become more common.

A common heterocyclic compound, 24621-61-2,(S)-Butane-1,3-diol, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 24621-61-2

To a solution of commercial available (s)-3-hydroxy butanol (10 g, Aldrich) in 50 mL of DMF, TsOH (20 mg, catalytic) and MeOPhCH (OMe) 2 (24 g) were added. After 3h at 35 C on a rotovap with slight vacuum, it was cooled and quenched with aq. Sat. NaHC03. The mixture was extracted with EtOAc (3x). The organic layers were washed with brine (2x), dried and concentrated. The crude product was evaporated with toluene (3x). [0230] The crude product was dissolved in 700 mL of CH2CI2. At 0 C, DIBAL-H solution (200 mL, 1.0 M, excess) was added. The reaction was warmed to room temperature overnight. Then it was quenched with methanol (50 mL), sat. Na2S04 at 0 C. The mixture was diluted with Et20 (1. 5L). After stirred for 5h, it was filtered through a pad of celite. The filtrate was concentrated to give an oil. The oil was purified on silica gel with Hexanes/EtOAc, 10: 1,6 : 1,3 : 1, and 1: 1 to give 24 g of desired product, 343-YW-203, 24621-61-2

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,24621-61-2,(S)-Butane-1,3-diol,its application will become more common.

Reference£º
Patent; EISAI CO. LTD.; WO2003/76424; (2003); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate