Some tips on 1,5-Diphenylpenta-1,4-dien-3-one

With the complex challenges of chemical substances, we look forward to future research findings about 538-58-9,belong chiral-oxygen-ligands compound

As a common heterocyclic compound, it belongs to chiral-oxygen-ligands compound, name is 1,5-Diphenylpenta-1,4-dien-3-one, and cas is 538-58-9, its synthesis route is as follows.,538-58-9

General procedure: To a 10 mL Schlenk tube equipped with a stir bar was charged with ketone (1 mmol), KOH (0.05 mmol), and iPrOH (3 mL). The mixture was degassed by bubbling N2, and 0.1 mol % of catalyst 2 for entry 1-10 and 0.5 mol% of 2 for entry 11-19, was added under a steady flow of N2. After removal any inorganic salts by filtration, all the volatiles were removed under reduced pressure. The pure product could be obtained by silica gel chromatography (ethyl acetate/hexane). The identity of these products have been confirmed by comparisons of the obtained spectra with those previously reported.

With the complex challenges of chemical substances, we look forward to future research findings about 538-58-9,belong chiral-oxygen-ligands compound

Reference£º
Article; Gong, Xue; Zhang, Hong; Li, Xingwei; Tetrahedron Letters; vol. 52; 43; (2011); p. 5596 – 5600;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Some scientific research about (S)-Butane-1,3-diol

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,24621-61-2,(S)-Butane-1,3-diol,its application will become more common.

24621-61-2 A common heterocyclic compound, 24621-61-2,(S)-Butane-1,3-diol, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

Example 4 : (R)-2-(3-{3-[[2-Chloro-3-(trifluoromethyl) benzyl] (2,2- diphenylethyl) amino]-1-methyl-propoxy}-phenyl) acetic acid methyl ester ; a) Toluene-4-sulfonic acid- (S)-3-hydroxy-butyl ester; To a stirring solution of (S)-1, 3-butanediol (1.0 g, 0.01 mmol) and triethylamine (1.39 g, 0.014 mmol) in dichloromethane (10 mL) at-20C was added dropwise p-toluenesulfonyl chloride and the mixture was stirred for 2 h. The reaction mixture was then warmed to RT and stirred overnight. The reaction mixture was poured into cold H2O (20 mL), and extracted three times with dichloromethane. The organic extracts were then washed with brine. The organic layer was dried over sodium sulfate, filtered, and concentrated in vacuo to give 2.6 g (96% yield) of title compound as an oil. MS (ESI) 244.8 (M+). The crude tosylat was used without further purification., 24621-61-2

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,24621-61-2,(S)-Butane-1,3-diol,its application will become more common.

Reference£º
Patent; SMITHKLINE BEECHAM CORPORATION; WO2003/82802; (2003); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

The important role of 538-58-9

With the complex challenges of chemical substances, we look forward to future research findings about 1,5-Diphenylpenta-1,4-dien-3-one

Name is 1,5-Diphenylpenta-1,4-dien-3-one, as a common heterocyclic compound, it belongs to chiral-oxygen-ligands compound, and cas is 538-58-9, its synthesis route is as follows.,538-58-9

General procedure: To a solution of dialkyl phosphite (0.01 mol) in anhydrous tetrahydrofuran (30 mL),maintained under a nitrogen atmosphere, sodium (0.02 g) was added and the mixture was stirred at roomtemperature until complete dissolution of sodium. Diarylideneketone 1 (0.01 mol) was then added and themixture heated under reflux for 4 h. After cooling, the reaction mixture was diluted with water (50 mL)and extracted with CHCl3 (2 ¡Á 25 mL). The organic phase was dried over Na2SO4 and concentrated undervacuum. The obtained residue was chromatographed on a silica gel column using a mixture of Et2O andhexane 9:1 as an eluent.

With the complex challenges of chemical substances, we look forward to future research findings about 1,5-Diphenylpenta-1,4-dien-3-one

Reference£º
Article; Lamouchi, Imen; Touil, Soufiane; Heterocycles; vol. 94; 5; (2017); p. 894 – 911;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

New downstream synthetic route of 538-58-9

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,1,5-Diphenylpenta-1,4-dien-3-one,538-58-9,its application will become more common.

A common heterocyclic compound, 538-58-9,1,5-Diphenylpenta-1,4-dien-3-one, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 538-58-9

General procedure: To a stirred solution of indole 1a (59 mg, 0.5 mmol) and chalcone 2a (115 mg, 0.55 mmol) in MeCN (2.0mL) was added a solution of Br2 (0.00077 mL) in MeCN (0.5 mL), and the mixture was stirred for 7.0 h at 50 C. After 1a was consumed, as indicated by TLC, the reaction mixture was quenched with saturated aqueous Na2S2O3 (0.2mL) and water (10.0 mL), and extracted with CH2Cl2 three times. The residue obtained after evaporation of the solvent was purified by column chromatography on silica gel (petroleum ether-ethyl acetate = 30:1, v/v) to afford adduct 3a as a white solid (151 mg, 93% yield).

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,1,5-Diphenylpenta-1,4-dien-3-one,538-58-9,its application will become more common.

Reference£º
Article; Liang, Deqiang; Li, Xiangguang; Zhang, Wanshun; Li, Yanni; Zhang, Mi; Cheng, Ping; Tetrahedron Letters; vol. 57; 9; (2016); p. 1027 – 1030;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Some scientific research about (S)-Butane-1,3-diol

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,24621-61-2,(S)-Butane-1,3-diol,its application will become more common.

24621-61-2 A common heterocyclic compound, 24621-61-2,(S)-Butane-1,3-diol, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

Example 25 (4-{(R)-3-[(2-CHLORO-3-TRIFLUOROMETHYL-BENZYL)-2, 2-DIPHENYLETHYL-AMINO]-BUTOXY}-INDOL-1- YL) acetic acid hydrochloride salt a) Toluene-4-sulfonic acid (S)-3-hydroxy-butyl ester To a solution of (S)-1, 3-butanediol (2.0 g, 22.0 MMOL) and Et3N (4.6 mL, 33.0 MMOL) in CH2CI2 (20 mL) at-20 C was added p-toluenesulfonyl chloride (4.46 g, 23.0 MMOL) and the reaction mixture was then warmed to RT and stirred overnight. The reaction mixture was washed with H20 and brine, dried over NA2SO4, filtered, and concentrated to give the title compound as a yellow oil (5.2 G, 96%)a) Toluene-4-sulfonic acid (S)-3-hydroxy-butyl ester To a solution of (S)-1, 3-butanediol (2.0 G, 22.0 MMOL) and Et3N (4.6 mL, 33.0 MMOL) in CH2CI2 (20 mL) at-20 C was added p-toluenesulfonyl chloride (4.46 g, 23.0 MMOL) and the reaction mixture was then warmed to RT and stirred overnight. The reaction mixture was washed with H20 and brine, dried over NA2SO4, filtered, and concentrated to give the title compound as a yellow oil (5.2 G, 96%)

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,24621-61-2,(S)-Butane-1,3-diol,its application will become more common.

Reference£º
Patent; SMITHKLINE BEECHAM CORPORATION; WO2005/23196; (2005); A2;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

A new synthetic route of 1,5-Diphenylpenta-1,4-dien-3-one

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,538-58-9,1,5-Diphenylpenta-1,4-dien-3-one,its application will become more common.

A common heterocyclic compound, 538-58-9,1,5-Diphenylpenta-1,4-dien-3-one, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 538-58-9

General procedure: A mixture of malononitrile (2a) (66 mg, 1 mmol), dibenzylideneacetone (6a) (234 mg, 1 mmol), tributylphosphine (25 mL, 0.1 mmol), and anhydrous CH2Cl2 (5.0 mL) was magnetically stirred in a flask under nitrogen atmosphere at room temperature. The reaction progress was monitored by thin layer chromatography (TLC) until the starting materials were completely consumed. Then, the reaction mixture was diluted with H2O (10 mL) and extracted with Et2O (3×10 mL), the organic phase was washed with brine (10 mL), dried over anhydrous Na2SO4. After the removal of the solvent under reduced pressure, the residue was subjected to chromatography on a silica gel (200-300 mesh) column using petroleum ether/ethyl acetate (4:1) as eluent to afford 7a (286 mg, 95% yield) as a light yellow solid (mp 170-171 C).

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,538-58-9,1,5-Diphenylpenta-1,4-dien-3-one,its application will become more common.

Reference£º
Article; Xu, Da-Zhen; Zhan, Ming-Zhe; Huang, You; Tetrahedron; vol. 70; 2; (2014); p. 176 – 180;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Some scientific research about (S)-Butane-1,3-diol

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,24621-61-2,(S)-Butane-1,3-diol,its application will become more common.

24621-61-2 A common heterocyclic compound, 24621-61-2,(S)-Butane-1,3-diol, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

S- (+)-1, 3-butanediol (96 mg, 1.065 mmol) in 3 ml of pyridine was cooled in an ice-water bath and 4,4′-dimethoxytrityl chloride (430 mg, 1.27 mmol) was added thereto. The resulting mixture was stirred for 6 hours at room temperature. 10 ml of 5% NAHCO3 was added thereto and the resulting solution was extracted with 15 ml of ethyl acetate. The organic layer was dried over MGS04 and evaporated under a reduced pressure. The resulting yellow liquid residue was purified by silica gel column chlomatography (eluent-ethyl acetate: hexane = 1: 3) to obtain the title compound (401 mg, 1.02 mmol) in a yield of 96%. Rf= 0.3 (ethyl acetate: Hexane = 1 : 2); IR (NACI) nu (cm-1) 3462, 3059, 3034, 2959, 2927, 2848,2835, 1607,1508, 1250; 1H NMR (Acetone-d6) delta 7.49 (br, 1H), 7.46 (br, 1H), 7.36-7. 18 (m, 7H), 6.86 (t, 2H, J=2. 6Hz), 6.84 (t, 2H, J=2.6Hz), 3.93 (br, 1H), 3.73 (s, 6H), 3. 50 (br, 1H), 3.28-3. 14 (m, 2H), 1.73 (m, 2H), 1. 11 (d, 3H, J=6. 2Hz) ; 13C-NMR (75.5 MHz, Acetone-d6) delta 158. 1, 145. 3, 136. 1, 136.0, 129.5, 127. 6, 127.2, 126. 1, 112.5, 85. 4, 64. 2, 60. 6, 54. 2, 39.0, 23.1; MS-FAB (m/z): [M] + calcd for C25H28O4, 392; found 392.; [alpha] 21D = +17. 6 (c 1.0, CHCl3), 24621-61-2

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,24621-61-2,(S)-Butane-1,3-diol,its application will become more common.

Reference£º
Patent; POSTECH FOUNDATION; WO2004/63208; (2004); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

The origin of a common compound about 24621-61-2

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,24621-61-2,(S)-Butane-1,3-diol,its application will become more common.

A common heterocyclic compound, 24621-61-2,(S)-Butane-1,3-diol, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 24621-61-2

Step E (2-TOLUENE-4-SULFONIC acid 3-hydroxy-butyl ester; A solution of (S)- (+)-1, 3-butanediol (9.5 g, 0.105 mol) and Et3N (12.8 g, 0.126 mol) in CH2C12 (200 mL) is treated with dibutyltin oxide (0.52 g, 2.08 mmol) and THENP-TOLUENESULFONYL chloride (20.09 g, 0.105 mol) is added as a solid in portions over 30 minutes at rt. The resultant mixture is stirred at rt for 17 hours under N2. The reaction is quenched with 1 N HC1 (50 mL), diluted with water and extracted with EtOAc. The organic layer is dried (NA2SO4), and the solvent is removed in vacuo to afford crude product that is absorbed on silica gel and purified by flash chromatography using 98/2 CH2C12/ACN (to elute the unreactedp-toluenesulfonyl chloride) and then 2/1 hexanes/acetone to afford 18. 67 g (73%) the title compound. Rf== 0.23, Rf bis-tosylate = 0.53 (98/2 CH2C12/ACN).

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,24621-61-2,(S)-Butane-1,3-diol,its application will become more common.

Reference£º
Patent; ELI LILLY AND COMPANY; WO2005/19151; (2005); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

The origin of a common compound about 1,5-Diphenylpenta-1,4-dien-3-one

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,538-58-9,1,5-Diphenylpenta-1,4-dien-3-one,its application will become more common.

A common heterocyclic compound, 538-58-9,1,5-Diphenylpenta-1,4-dien-3-one, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 538-58-9

General procedure: To a solution of dialkyl phosphite (0.01 mol) in anhydrous tetrahydrofuran (30 mL),maintained under a nitrogen atmosphere, sodium (0.02 g) was added and the mixture was stirred at roomtemperature until complete dissolution of sodium. Diarylideneketone 1 (0.01 mol) was then added and themixture heated under reflux for 4 h. After cooling, the reaction mixture was diluted with water (50 mL)and extracted with CHCl3 (2 ¡Á 25 mL). The organic phase was dried over Na2SO4 and concentrated undervacuum. The obtained residue was chromatographed on a silica gel column using a mixture of Et2O andhexane 9:1 as an eluent.

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,538-58-9,1,5-Diphenylpenta-1,4-dien-3-one,its application will become more common.

Reference£º
Article; Lamouchi, Imen; Touil, Soufiane; Heterocycles; vol. 94; 5; (2017); p. 894 – 911;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

New downstream synthetic route of 538-58-9

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,1,5-Diphenylpenta-1,4-dien-3-one,538-58-9,its application will become more common.

A common heterocyclic compound, 538-58-9,1,5-Diphenylpenta-1,4-dien-3-one, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 538-58-9

Bis(dibenzylideneacetone)palladium(0) (Pd(dba)2)was synthesized by reducing PdCl2 with methanol in thepresence of sodium acetate and dba [30]. Dibenzylideneacetone(3.4500 g, 1.472 ¡Á 10-2 mol), sodium acetatetrihydrate (4.8525 g, 3.568 ¡Á 10-2 mol), and methanol(113 mL) were placed in a two-neck round-bottomflask. The reaction mixture was stirred at 50C for 45-60 min to obtain a solution, and PdCl2 (0.7875 g,4.434 ¡Á 10-3 mol) was added. The resulting solutionwas stirred in an argon atmosphere at 40C for 4 h.This yielded a dark violet precipitate of the Pd(dba)2complex, which was collected on a fritted glass filterunder argon, washed with water and acetone, andvacuum-dried (30C/2-3 Torr) for 3 h. The productyield was 2.4 g. (94% of the theoretical yield); m =152C. According to the literature, m of thePd(dba)2 complex is 152C [31]. UV spectra:Pd(dba)2, 525 nm (d ? d* transition, epsilon525 =6400 L mol-1 cm-1); non-coordinated dba, 325 nm(n ? pi* transition, epsilon325 = 33540 L mol-1 cm-1).

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,1,5-Diphenylpenta-1,4-dien-3-one,538-58-9,its application will become more common.

Reference£º
Article; Skripov; Belykh; Sterenchuk; Akimov; Tauson; Schmidt; Kinetics and Catalysis; vol. 58; 1; (2017); p. 34 – 45; Kinet. Katal.; vol. 58; 1; (2017); p. 36 – 48,13;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate