Some tips on 538-58-9

With the complex challenges of chemical substances, we look forward to future research findings about 1,5-Diphenylpenta-1,4-dien-3-one

As a common heterocyclic compound, it belongs to chiral-oxygen-ligands compound, name is 1,5-Diphenylpenta-1,4-dien-3-one, and cas is 538-58-9, its synthesis route is as follows.,538-58-9

General procedure: A flask equipped a magnetic stirring bar was charged with alpha,beta-unsaturatedketone 1 (1.0 mmol), tosylhydrazine(1.1 mmol), K2CO3 (1.5 mmol),and dioxane (2 ml). The reaction mixture was stirredunder a nitrogen atmosphere at 110 Cfor 24 h. The reaction mixture was cooled to room temperature; the reaction mixture was extracted with diethylether (5¡Á3 ml). The combined extracts was washed withbrine and dried over MgSO4, and the crude product was adsorbed ontosilica gel and purified by column chromatography (silica gel, petroleum ether:ethyl acetate 20:1) gave the pure saturated carbonyl compound 4.

With the complex challenges of chemical substances, we look forward to future research findings about 1,5-Diphenylpenta-1,4-dien-3-one

Reference£º
Article; Zhou, Xiaomeng; Li, Xiaokang; Zhang, Wei; Chen, Junmin; Tetrahedron Letters; vol. 55; 37; (2014); p. 5137 – 5140;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

A new synthetic route of (S)-Propane-1,2-diol

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,4254-15-3,(S)-Propane-1,2-diol,its application will become more common.

A common heterocyclic compound, 4254-15-3,(S)-Propane-1,2-diol, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 4254-15-3

Under an atmosphere of argon, trifluoromethanesulfonic acid (485 muEpsilon; 822 mg; 5.47 mmol; 5.0 eq) was added dropwise at 0-5¡ãC (ice/brine bath) to a solution of l-[2-chloro-4-(4-chlorophenoxy)phenyl]-2-(5- fluoroimidazol-l-yl)ethanone (400 mg ; 1.09 mmol) and (2S)-propane-l,2-diol (3.33 g; 43.8 mmol; 40.0 eq) in anhydrous toluene (3.0 mL). The resulting mixture was allowed to warm up to room temperature, then refluxed for 20h. Thereafter the reaction mixture was allowed to cool down to room temperature, diluted with ethyl acetate, washed with saturated aqueous sodium bicarbonate, the combined organic layers were – – dried (MgSO i) and concentrated to dryness in vacuo. The residue was purified by chromatography over silica gel, eluted with a mixture of dichloromethane/methanol (100:0 to 90: 10). Evaporation of the solvents in vacuo afforded 271 mg (54percent) of l-[[2-[2-chloro-4-(4-chlorophenoxy)phenyl]-4-methyl-l,3-dioxolan-2- yl]methyl]-5-fluoro-imidazole (approx. 59:41 mixture of diastereoisomers) as a colourless solid. MS (ESI): 423.1 ([M+H]+)

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,4254-15-3,(S)-Propane-1,2-diol,its application will become more common.

Reference£º
Patent; BAYER CROPSCIENCE AKTIENGESELLSCHAFT; BAYER AKTIENGESELLSCHAFT; COQUERON, Pierre-Yves; BERNIER, David; GENIX, Pierre; MILLER, Ricarda; NAUD, Sebastien; WITTROCK, Sven; BRUNET, Stephane; KENNEL, Philippe; MEISSNER, Ruth; WACHENDORFF-NEUMANN, Ulrike; GOeRTZ, Andreas; (104 pag.)WO2018/60088; (2018); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

The important role of 538-58-9

With the complex challenges of chemical substances, we look forward to future research findings about 1,5-Diphenylpenta-1,4-dien-3-one

Name is 1,5-Diphenylpenta-1,4-dien-3-one, as a common heterocyclic compound, it belongs to chiral-oxygen-ligands compound, and cas is 538-58-9, its synthesis route is as follows.,538-58-9

General procedure: A mixture of divinyl ketone (0.5 mmol), indolin-2-one (0.6 mmol)and cesium carbonate (0.5 mmol) in methylene chloride (5 mL) wasstirred at room temperature for the appropriate time. Then the resultingmixture was extracted with ethyl acetate (2 ¡Á 5 mL). The combinedorganic layers were dried over anhydrous magnesium sulfate andconcentrated under reduced pressure. The residues were isolated bycolumn chromatography using petroleum ether and ethyl acetate (v/v5 : 1) as eluent to give the pure product.2,6-Diphenylspiro[cyclohexane-1,3?-indoline]-2?,4-dione (2a): Whitesolid; m.p. 216-218 C; 1H NMR (600 MHz, CDCl3): delta 8.70 (s, 1H),7.23-7.20 (m, 3H), 7.00-6.95 (m, 6H), 6.90 (d, J = 7.3 Hz, 2H), 6.72 (t,J = 7.6 Hz, 1H), 6.56 (d, J = 7.7 Hz, 1H), 6.21 (d, J = 7.6 Hz, 1H), 3.96(t, J = 14.3 Hz, 1H), 3.80 (dd, J = 14.0, 3.7 Hz, 1H), 3.69 (t, J = 6.0 Hz,1H), 3.62 (dd, J = 16.1, 6.0 Hz, 1H), 2.99 (dd, J = 16.1, 5.9 Hz, 1H),2.72 (dd, J = 15.8, 3.4 Hz, 1H); 13C NMR (150 MHz, CDCl3): delta 211.4,180.9, 140.2, 139.9, 138.0, 130.0, 129.3, 128.2, 128.1, 128.0, 127.9,127.4, 127.2, 125.9, 121.4, 109.3, 56.0, 46.6, 45.5, 42.7, 41.9; Anal.calcd for C25H21NO2: C, 81.72; H, 5.76; N, 3.81; found: C, 81.66; H,5.78; N, 3.80%.

With the complex challenges of chemical substances, we look forward to future research findings about 1,5-Diphenylpenta-1,4-dien-3-one

Reference£º
Article; Li, Zheng; Li, Jiasheng; Yang, Jingya; Journal of Chemical Research; vol. 41; 3; (2017); p. 168 – 171;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

The origin of a common compound about 24621-61-2

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,24621-61-2,(S)-Butane-1,3-diol,its application will become more common.

A common heterocyclic compound, 24621-61-2,(S)-Butane-1,3-diol, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 24621-61-2

Example 1; Preparation of (3S)-1-p-Toluenesulfonyloxy-3-triethylsilyloxy-butane (2); To a stirred solution of the (S)-(+)-1,3-butanediol 1 (1 g, 11.1 mmol), DMAP (30 mg, 0.25 mmol) and Et3N (4.6 mL, 3.33 g, 33 mmol) in anhydrous methylene chloride (20 mL) p-toluenesulfonyl chloride (2.54 g, 13.3 mmol) was added at 0 C. The reaction mixture was stirred at 4 C. for 22 h. Methylene chloride was added and the mixture was washed with water, dried (Na2SO4) and concentrated under reduced pressure. A residue was chromatographed on silica gel with hexane/ethyl acetate (8:2, then 1:1) to afford the tosylate (2.31 g, 85% yield) as a colorless oil.

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,24621-61-2,(S)-Butane-1,3-diol,its application will become more common.

Reference£º
Patent; DeLuca, Hector F.; Clagett-Dame, Margaret; Plum, Lori A.; Chiellini, Grazia; Grzywacz, Pawel; US2008/81800; (2008); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

A new synthetic route of (S)-Butane-1,3-diol

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,24621-61-2,(S)-Butane-1,3-diol,its application will become more common.

A common heterocyclic compound, 24621-61-2,(S)-Butane-1,3-diol, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 24621-61-2

Production of (S)-3-Hydroxy-1-(p-toluenesulfonyloxy)butane In the same manner as in the first step of Production Example 32, the desired compound (77.5 g) was obtained as light brown oil from (S)-1,3-butanediol (30.0 g) and p-toluenesulfonyl chloride (69.8 g). The thus-obtained oil was immediately subjected to the next step.

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,24621-61-2,(S)-Butane-1,3-diol,its application will become more common.

Reference£º
Patent; Fujisawa Pharmaceutical Co., Ltd.; US6420409; (2002); B1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

A new synthetic route of 19132-06-0

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,19132-06-0,(2S,3S)-Butane-2,3-diol,its application will become more common.

A common heterocyclic compound, 19132-06-0,(2S,3S)-Butane-2,3-diol, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 19132-06-0

To a 500-mL, 3-necked-RBF (equipped with a H20-cooled reflux condenser and an HCl trap) was added (2s,3s)-(+)-2,3-butanediol (Aldrich; 15.00 mL, 166 mmol) and CC14 (120 mL). SOCl2, reagentplus (14.57 mL, 200 mmol) was then added drop wise via a syringe over a period of 20 min and the resulting mixture was heated to 98C for 45 min, then allowed to cool to rt. The reaction mixture was then cooled in an ice/H20 bath, MeCN (120 mL) and H20 (150 mL) were added followed by ruthenium(III) chloride (0.035 g, 0.166 mmol). Sodium periodate (53.4 g, 250 mmol) was then added slowly portion wise over 30 min. The resulting biphasic brown mixture was stirred vigorously while allowed to reach rt for a period of 1.5 h (internal temperature never increased above rt). TLC (50% EtOAc in heptanes) showed complete conversion. The crude mixture was then poured into ice H20 and extracted twice with 300 mL of Et20. The combined organic layers were washed once with 200 mL of sat. sodium bicarbonate, washed once with 200 mL of brine, dried over Na2S04; and concentrated by rotary evaporation to give (4S,5S)-4,5-dimethyl-l,3,2- dioxathiolane 2,2-dioxide (21.2 g, 139 mmol) as a red oil.

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,19132-06-0,(2S,3S)-Butane-2,3-diol,its application will become more common.

Reference£º
Patent; AMGEN INC.; BROWN, Sean P.; LI, Yunxiao; LIZARZABURU, Mike Elias; LUCAS, Brian S.; PARAS, Nick A.; TAYGERLY, Joshua; VIMOLRATANA, Marc; WANG, Xianghong; YU, Ming; ZANCANELLA, Manuel; ZHU, Liusheng; GONZALEZ BUENROSTRO, Ana; LI, Zhihong; (279 pag.)WO2016/33486; (2016); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

The origin of a common compound about 24621-61-2

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,24621-61-2,(S)-Butane-1,3-diol,its application will become more common.

A common heterocyclic compound, 24621-61-2,(S)-Butane-1,3-diol, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 24621-61-2

Example 7A (2S)-4-((tert-butyl(dimethyl)silyl)oxy)-2-butanol A 0 C. solution of (S)-(+)-1,3-butanediol (2.1 g, 23.3 mmol), imidazole (1.74 g, 25.6 mmol), and N,N-dimethylformamide (1.0 mL) in dichloromethane (40 mL) was treated with tert-butyl-dimethylsilyl chloride (3.68 g, 23.3 mmol). The reaction mixture was warmed to room temperature, stirred overnight, quenched with saturated aqueous ammonium chloride and extracted with dichloromethane. The combined dichloromethane layers were dried (MgSO4), filtered and concentrated to afford of the desired product of sufficient purity for subsequent use without further purification in near quantitative yield. MS (DCI/NH3) m/z 205 (M+H)+; 1H NMR (300 MHz, CDCl3) delta3.95 (m, 1H), 3.79 (m, 2H), 3.27 (br s, 1H), 1.56 (m 2H), 1.11 (d, 3H), 0.82 (s, 9H), 0.016 (s, 6H).

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,24621-61-2,(S)-Butane-1,3-diol,its application will become more common.

Reference£º
Patent; Bennani, Youssef L.; Black, Lawrence A.; Dwight, Wesley J.; Faghih, Ramin; Gentles, Robert G.; Liu, Huaqing; Phelan, Kathleen M.; Vasudevan, Anil; Zhang, Henry Q.; US2001/49367; (2001); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

A new synthetic route of (S)-Butane-1,3-diol

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,24621-61-2,(S)-Butane-1,3-diol,its application will become more common.

A common heterocyclic compound, 24621-61-2,(S)-Butane-1,3-diol, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 24621-61-2

General procedure: (R)-Ethyl 3-hydroxybutyrate (2.1 g, 16 mmol) and (R)-1,3 butanediol(1.0 g, 11 mmol) were combined and incubated with CAL-B (0.2 g,400 U) at 80 torr without solvent in a rotary evaporator. The reaction was monitored by withdrawing 5 muL portions of the reaction mixture,which were dissolved in 1.0 mL methanol for analysis by GC-MS. Upon consumption of the diol, the reaction mixture was taken up in dichloromethane,the beads were filtered and washed, and the solventremoved by rotary evaporation. Excess (R)-ethyl 3-hydroxybutyratewas removed by heating to 60 deg C under reduced pressure (1 torr).The residue was suspended in ethyl acetate, treated with activated carbon and filtered to yield (R)-3-hydroxybutyryl-(R)-3-hydroxybutyrateas a clear oil (1.2 g, 62%).

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,24621-61-2,(S)-Butane-1,3-diol,its application will become more common.

Reference£º
Article; Budin, Noah; Higgins, Erin; DiBernardo, Anthony; Raab, Cassidy; Li, Chun; Ulrich, Scott; Bioorganic Chemistry; vol. 80; (2018); p. 560 – 564;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

The origin of a common compound about 24621-61-2

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,24621-61-2,(S)-Butane-1,3-diol,its application will become more common.

A common heterocyclic compound, 24621-61-2,(S)-Butane-1,3-diol, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 24621-61-2

Example 4 : (R)-2-(3-{3-[[2-Chloro-3-(trifluoromethyl) benzyl] (2,2- diphenylethyl) amino]-1-methyl-propoxy}-phenyl) acetic acid methyl ester ; a) Toluene-4-sulfonic acid- (S)-3-hydroxy-butyl ester; To a stirring solution of (S)-1, 3-butanediol (1.0 g, 0.01 mmol) and triethylamine (1.39 g, 0.014 mmol) in dichloromethane (10 mL) at-20C was added dropwise p-toluenesulfonyl chloride and the mixture was stirred for 2 h. The reaction mixture was then warmed to RT and stirred overnight. The reaction mixture was poured into cold H2O (20 mL), and extracted three times with dichloromethane. The organic extracts were then washed with brine. The organic layer was dried over sodium sulfate, filtered, and concentrated in vacuo to give 2.6 g (96% yield) of title compound as an oil. MS (ESI) 244.8 (M+). The crude tosylat was used without further purification.

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,24621-61-2,(S)-Butane-1,3-diol,its application will become more common.

Reference£º
Patent; SMITHKLINE BEECHAM CORPORATION; WO2003/82802; (2003); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Some scientific research about (S)-Butane-1,3-diol

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,(S)-Butane-1,3-diol,24621-61-2,its application will become more common.

24621-61-2 A common heterocyclic compound, 24621-61-2,(S)-Butane-1,3-diol, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

Step E (2-TOLUENE-4-SULFONIC acid 3-hydroxy-butyl ester; A solution of (S)- (+)-1, 3-butanediol (9.5 g, 0.105 mol) and Et3N (12.8 g, 0.126 mol) in CH2C12 (200 mL) is treated with dibutyltin oxide (0.52 g, 2.08 mmol) and THENP-TOLUENESULFONYL chloride (20.09 g, 0.105 mol) is added as a solid in portions over 30 minutes at rt. The resultant mixture is stirred at rt for 17 hours under N2. The reaction is quenched with 1 N HC1 (50 mL), diluted with water and extracted with EtOAc. The organic layer is dried (NA2SO4), and the solvent is removed in vacuo to afford crude product that is absorbed on silica gel and purified by flash chromatography using 98/2 CH2C12/ACN (to elute the unreactedp-toluenesulfonyl chloride) and then 2/1 hexanes/acetone to afford 18. 67 g (73%) the title compound. Rf== 0.23, Rf bis-tosylate = 0.53 (98/2 CH2C12/ACN).

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,(S)-Butane-1,3-diol,24621-61-2,its application will become more common.

Reference£º
Patent; ELI LILLY AND COMPANY; WO2005/19151; (2005); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate