Share a compound : 538-58-9

538-58-9 is used more and more widely, we look forward to future research findings about 1,5-Diphenylpenta-1,4-dien-3-one

1,5-Diphenylpenta-1,4-dien-3-one, cas is 538-58-9, it is a common heterocyclic compound, the chiral-oxygen-ligands compound, its synthesis route is as follows.,538-58-9

General procedure: A solution of N,N-dimethyl barbituric acid (1) (2 mmol) and diarylidene acetone derivatives (2a-p) (2 mmol) in 10 mL of dry CH2Cl2 were charged into a 50 mL round bottom flask under inert atmosphere. Et2NH (2.5 mmol) was then added to the reaction mixture and stirred at room temperature for up to 1.5-2 h, until TLC showed complete consumption of both the reactants. After completion of the reaction, the crude product was directly subjected to column chromatography, using 100-200 mesh silica gel and ethyl acetate/n-hexane (2:8, v/v) as an eluent to afford the pure products 3a-p. The solid products were further crystallized from a mixture of CHCl3/n-heptane. 4.2.1 2,4-Dimethyl-7,11-diphenyl-2,4-diazaspiro[5.5]undecane-1,3,5,9-tetraone (3a) Diarylidene acetone 2a (468.2 mg, 2 mmol) reacted with compound 1 (312.1 mg, 2 mmol) according to GP1 yielded white solid spiro-product 3a (765 mg, 1.96 mmol, 98%); mp 125-127 C; 1H NMR (400 MHz, CDCl3) delta: 2.59 and 2.63 (dd, 2H, J = 15.36 Hz, 4.40 Hz, CH2(e)), 2.85 (s, 3H, -NCH3), 3.01 (s, 3H, -NCH3), 3.72 (t, 2H, J = 14.7 Hz, CH2(a)), 3.99 and 4.03 (dd, 2H, J = 14.7 Hz, 4.40 Hz, CH), 7.06-7.08 (m, 4H, Ar-H), 7.21-7.26 (m, 6H, Ar-H); 13C NMR (100 MHz, CDCl3) delta: 27.98, 28.39, 42.99, 50.55, 60.95, 127.56, 128.69, 128.94, 137.17, 149.70, 169.04, 170.71, 208.29; IR (KBr, cm-1) numax = 2959, 2925, 1716, 1675, 1484, 1422, 1381, 1125, 755, 706; [Anal. Calcd for C23H22N2O4: C, 70.75; H, 5.68; N, 7.17; Found: C, 70.69; H, 5.65; N, 7.01]; LC/MS (ESI, m/z): [M+], calculated 390.21, C23H22N2O4 found 390.16; CCDC-1007513.

538-58-9 is used more and more widely, we look forward to future research findings about 1,5-Diphenylpenta-1,4-dien-3-one

Reference£º
Article; Barakat, Assem; Islam, Mohammad Shahidul; Al-Majid, Abdullah Mohammed; Ghabbour, Hazem A.; Fun, Hoong-Kun; Javed, Kulsoom; Imad, Rehan; Yousuf, Sammer; Choudhary, M. Iqbal; Wadood, Abdul; Bioorganic and Medicinal Chemistry; vol. 23; 20; (2015); p. 6740 – 6748;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

New learning discoveries about 538-58-9

With the rapid development of chemical substances, we look forward to future research findings about 1,5-Diphenylpenta-1,4-dien-3-one

1,5-Diphenylpenta-1,4-dien-3-one, cas is 538-58-9, it is a common heterocyclic compound, the chiral-oxygen-ligands compound, its synthesis route is as follows.,538-58-9

Step 1. Under a nitrogen atmosphere, add 8 L of absolute ethanol and 0.112 kg of anhydrous sodium acetate to a glass reactor heated in a water bath.When the system temperature was heated to 68 C, 0.92 kg of dibenzylideneacetone obtained in Example 1 was added.After stirring for 30 minutes, add ice to the water bath heater to quickly cool the system down to 60 C.Then, 0.2 kg of palladium dichloride prepared in Example 1 was added and reacted at 60 C for 2 hours.Funnel filtration gave bis (dibenzylideneacetone) palladium (0);

With the rapid development of chemical substances, we look forward to future research findings about 1,5-Diphenylpenta-1,4-dien-3-one

Reference£º
Patent; Xi’an Kaili New Materials Co., Ltd.; Zhang Jielan; Chen Dan; Yan Pandun; Xiao Dawei; Li Yuefeng; Wan Kerou; (6 pag.)CN110256503; (2019); A;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

The important role of (S)-Butane-1,3-diol

24621-61-2 is used more and more widely, we look forward to future research findings about (S)-Butane-1,3-diol

As a common heterocyclic compound, it belongs to chiral-oxygen-ligands compound, name is (S)-Butane-1,3-diol, and cas is 24621-61-2, its synthesis route is as follows.,24621-61-2

Example 1; Preparation of (3S)-1-p-Toluenesulfonyloxy-3-triethylsilyloxy-butane (2); To a stirred solution of the (S)-(+)-1,3-butanediol 1 (1 g, 11.1 mmol), DMAP (30 mg, 0.25 mmol) and Et3N (4.6 mL, 3.33 g, 33 mmol) in anhydrous methylene chloride (20 mL) p-toluenesulfonyl chloride (2.54 g, 13.3 mmol) was added at 0 C. The reaction mixture was stirred at 4 C. for 22 h. Methylene chloride was added and the mixture was washed with water, dried (Na2SO4) and concentrated under reduced pressure. A residue was chromatographed on silica gel with hexane/ethyl acetate (8:2, then 1:1) to afford the tosylate (2.31 g, 85% yield) as a colorless oil.

24621-61-2 is used more and more widely, we look forward to future research findings about (S)-Butane-1,3-diol

Reference£º
Patent; DeLuca, Hector F.; Clagett-Dame, Margaret; Plum, Lori A.; Chiellini, Grazia; Grzywacz, Pawel; US2008/81799; (2008); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Share a compound : 24621-61-2

24621-61-2 is used more and more widely, we look forward to future research findings about (S)-Butane-1,3-diol

(S)-Butane-1,3-diol, cas is 24621-61-2, it is a common heterocyclic compound, the chiral-oxygen-ligands compound, its synthesis route is as follows.,24621-61-2

Example 25 (4-{(R)-3-[(2-CHLORO-3-TRIFLUOROMETHYL-BENZYL)-2, 2-DIPHENYLETHYL-AMINO]-BUTOXY}-INDOL-1- YL) acetic acid hydrochloride salt a) Toluene-4-sulfonic acid (S)-3-hydroxy-butyl ester To a solution of (S)-1, 3-butanediol (2.0 g, 22.0 MMOL) and Et3N (4.6 mL, 33.0 MMOL) in CH2CI2 (20 mL) at-20 C was added p-toluenesulfonyl chloride (4.46 g, 23.0 MMOL) and the reaction mixture was then warmed to RT and stirred overnight. The reaction mixture was washed with H20 and brine, dried over NA2SO4, filtered, and concentrated to give the title compound as a yellow oil (5.2 G, 96%)a) Toluene-4-sulfonic acid (S)-3-hydroxy-butyl ester To a solution of (S)-1, 3-butanediol (2.0 G, 22.0 MMOL) and Et3N (4.6 mL, 33.0 MMOL) in CH2CI2 (20 mL) at-20 C was added p-toluenesulfonyl chloride (4.46 g, 23.0 MMOL) and the reaction mixture was then warmed to RT and stirred overnight. The reaction mixture was washed with H20 and brine, dried over NA2SO4, filtered, and concentrated to give the title compound as a yellow oil (5.2 G, 96%)

24621-61-2 is used more and more widely, we look forward to future research findings about (S)-Butane-1,3-diol

Reference£º
Patent; SMITHKLINE BEECHAM CORPORATION; WO2005/23196; (2005); A2;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Share a compound : 24621-61-2

24621-61-2 is used more and more widely, we look forward to future research findings about (S)-Butane-1,3-diol

(S)-Butane-1,3-diol, cas is 24621-61-2, it is a common heterocyclic compound, the chiral-oxygen-ligands compound, its synthesis route is as follows.,24621-61-2

Preparation of (3S)-1-p-Toluenesulfonyloxy-3-triethylsilyloxy-butane (2b); To a stirred, solution of the(S)-(+)-1,3-butanediol 1b (1 g, 11.1 mmol), DMAP (30 mg, 0.25 mmol) and Et3N (4.6 mL, 3.33 g, 33 mmol) in anhydrous methylene chloride (20 mL) p-toluenesulfonyl chloride (2.54 g, 13.3 mmol) was added at 0 C. The reaction mixture was stirred at 4 C. for 22 h. Methylene chloride was added and the mixture was washed with water, dried (Na2SO4) and concentrated under reduced pressure. A residue was chromatographed on silica gel with hexane/ethyl acetate (8:2, then 1:1) to afford the tosylate (2.31 g, 85% yield) as a colorless oil.

24621-61-2 is used more and more widely, we look forward to future research findings about (S)-Butane-1,3-diol

Reference£º
Patent; WISCONSIN ALUMNI RESEARCH FOUNDATION; US2012/283228; (2012); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

The important role of 19132-06-0

With the complex challenges of chemical substances, we look forward to future research findings about (2S,3S)-Butane-2,3-diol

Name is (2S,3S)-Butane-2,3-diol, as a common heterocyclic compound, it belongs to chiral-oxygen-ligands compound, and cas is 19132-06-0, its synthesis route is as follows.,19132-06-0

To a 500-mL, 3-necked-RBF (equipped with a H20-cooled refluxcondenser and an HC1 trap) was added (2s,3s)-(+)-2,3-butanediol (Aldrich; 15.00mL, 166 mmol) and CC14 (120 mL). SOC12, reagentplus (14.57 mL, 200 mmol)was then added drop wise via a syringe over a period of 20 mm and the resultingmixture was heated to 98C for 45 mm, then allowed to cool to rt. The reactionmixture was then cooled in an ice/H20 bath, MeCN (120 mL) and H20 (150 mL) were added followed by ruthenium(III) chloride (0.035 g, 0.166 mmol). Sodium periodate (53.4 g, 250 mmol) was then added slowly portion wise over 30 mm. The resulting biphasic brown mixture was stirred vigorously while allowed toreach rt for a period of 1.5 h (internal temperature never increased above rt). TLC (50% EtOAc in heptanes) showed complete conversion. The cmde mixture was then poured into ice H20 and extracted twice with 300 mL of Et20. The combined organic layers were washed once with 200 mL of sat. sodium bicarbonate, washed once with 200 mL of brine, dried over Na2504, andconcentrated by rotary evaporation to give (45,55)-4,5-dimethyl-1,3,2- dioxathiolane 2,2-dioxide (21.2 g, 139 mmol) as a red oil.

With the complex challenges of chemical substances, we look forward to future research findings about (2S,3S)-Butane-2,3-diol

Reference£º
Patent; AMGEN INC.; HARRINGTON, Paul E.; ASHTON, Kate; BROWN, Sean P.; KALLER, Matthew R.; KOHN, Todd J.; LANMAN, Brian Alan; LI, Kexue; LI, Yunxiao; LOW, Jonathan D.; MINATTI, Ana Elena; PICKRELL, Alexander J.; STEC, Markian M.; TAYGERLY, Joshua; (991 pag.)WO2018/183418; (2018); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Some tips on 24621-61-2

With the complex challenges of chemical substances, we look forward to future research findings about (S)-Butane-1,3-diol

It is a common heterocyclic compound, the chiral-oxygen-ligands compound, (S)-Butane-1,3-diol, cas is 24621-61-2 its synthesis route is as follows.,24621-61-2

General procedure: (R)-Ethyl 3-hydroxybutyrate (2.1 g, 16 mmol) and (R)-1,3 butanediol(1.0 g, 11 mmol) were combined and incubated with CAL-B (0.2 g,400 U) at 80 torr without solvent in a rotary evaporator. The reaction was monitored by withdrawing 5 muL portions of the reaction mixture,which were dissolved in 1.0 mL methanol for analysis by GC-MS. Upon consumption of the diol, the reaction mixture was taken up in dichloromethane,the beads were filtered and washed, and the solventremoved by rotary evaporation. Excess (R)-ethyl 3-hydroxybutyratewas removed by heating to 60 deg C under reduced pressure (1 torr).The residue was suspended in ethyl acetate, treated with activated carbon and filtered to yield (R)-3-hydroxybutyryl-(R)-3-hydroxybutyrateas a clear oil (1.2 g, 62%).

With the complex challenges of chemical substances, we look forward to future research findings about (S)-Butane-1,3-diol

Reference£º
Article; Budin, Noah; Higgins, Erin; DiBernardo, Anthony; Raab, Cassidy; Li, Chun; Ulrich, Scott; Bioorganic Chemistry; vol. 80; (2018); p. 560 – 564;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

The important role of 24621-61-2

With the complex challenges of chemical substances, we look forward to future research findings about (S)-Butane-1,3-diol

Name is (S)-Butane-1,3-diol, as a common heterocyclic compound, it belongs to chiral-oxygen-ligands compound, and cas is 24621-61-2, its synthesis route is as follows.,24621-61-2

To a solution of (S)-1,3-butanediol (807 mg) in DMF (10 mL) at 0C was added potassium t-butoxide (7.2 mL of a 1M solution in THF). After 1 h, the mixture was cooled to -20C and then 2-chloro-3-(4-methylsulfonyl)phenyl-5-trifluoromethylpyridine (1 g) was added as a solid. The resulting mixture was stirred for 24 h, warming to r.t. To the mixture was added saturated NH4Cl and the mixture was extracted with ethyl acetate. The organics were dried (MgSO4) and concentrated. Flash chromatography (1:1 hexane/ethyl acetate) provided the title compound as a white solid (323 mg).1H NMR (300 MHz, acetone-d6): d 1.15 (d, 3H), 1.75-2.00 (m, 2H), 3.15 (s, 3H), 3.65 (d, 1H), 3.85-4.00 (m, 1H), 4.60 (dd, 2H), 7.95 (d, 2H), 8.03 (d, 2H), 8.10 (d, 1H), 8.57 (d, 1H).

With the complex challenges of chemical substances, we look forward to future research findings about (S)-Butane-1,3-diol

Reference£º
Patent; MERCK FROSST CANADA & CO.; EP1012142; (2004); B1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Downstream synthetic route of (S)-Butane-1,3-diol

With the complex challenges of chemical substances, we look forward to future research findings about (S)-Butane-1,3-diol,belong chiral-oxygen-ligands compound

As a common heterocyclic compound, it belongs to quinuclidine compound,Quinuclidine-4-carboxylic acid hydrochloride,40117-63-3,Molecular formula: C8H14ClNO157,mainly used in chemical industry, its synthesis route is as follows.,24621-61-2

Example 7A (2S)-4-((tert-butyl(dimethyl)silyl)oxy)-2-butanol A 0 C. solution of (S)-(+)-1,3-butanediol (2.1 g, 23.3 mmol), imidazole (1.74 g, 25.6 mmol), and N,N-dimethylformamide (1.0 mL) in dichloromethane (40 mL) was treated with tert-butyl-dimethylsilyl chloride (3.68 g, 23.3 mmol). The reaction mixture was warmed to room temperature, stirred overnight, quenched with saturated aqueous ammonium chloride and extracted with dichloromethane. The combined dichloromethane layers were dried (MgSO4), filtered and concentrated to afford of the desired product of sufficient purity for subsequent use without further purification in near quantitative yield. MS (DCI/NH3) m/z 205 (M+H)+; 1H NMR (300 MHz, CDCl3) delta3.95 (m, 1H), 3.79 (m, 2H), 3.27 (br s, 1H), 1.56 (m 2H), 1.11 (d, 3H), 0.82 (s, 9H), 0.016 (s, 6H).

With the complex challenges of chemical substances, we look forward to future research findings about (S)-Butane-1,3-diol,belong chiral-oxygen-ligands compound

Reference£º
Patent; Bennani, Youssef L.; Black, Lawrence A.; Dwight, Wesley J.; Faghih, Ramin; Gentles, Robert G.; Liu, Huaqing; Phelan, Kathleen M.; Vasudevan, Anil; Zhang, Henry Q.; US2001/49367; (2001); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Downstream synthetic route of (S)-Butane-1,3-diol

With the complex challenges of chemical substances, we look forward to future research findings about (S)-Butane-1,3-diol,belong chiral-oxygen-ligands compound

As a common heterocyclic compound, it belongs to quinuclidine compound,Quinuclidine-4-carboxylic acid hydrochloride,40117-63-3,Molecular formula: C8H14ClNO106,mainly used in chemical industry, its synthesis route is as follows.,24621-61-2

EXAMPLE 38 2-((3S)-3-Hydroxy- 1-butyloxy)-3-(4-methylsulfonyl)phenyl-5-trifluoromethylpyridine To a solution of (S)-1,3-butanediol (807 mg) in DMF (10 mL) at 0 C. was added potassium t-butoxide (7.2 mL of a 1M solution in THF). After 1 h, the mixture was cooled to -20 C. and then 2-chloro-3-(4-methylsulfonyl)phenyl-5-trifluoromethylpyridine (1 g) was added as a solid. The resulting mixture was stirred for 24 h, warming to r.t. To the mixture was added saturated NH4Cl and the mixture was extracted with ethyl acetate. The organics were dried (MgSO4) and concentrated. Flash chromatography (1:1 hexane/ethyl acetate) provided the title compound as a white solid (323 mg). 1 H NMR (300 MHz, acetone-d6): d 1.15 (d, 3H), 1.75-2.00 (m, 2H), 3.15 (s, 3H), 3.65 (d, 1H), 3.85-4.00 (m, 1H), 4.60 (dd, 2H), 7.95 (d, 2H), 8.03 (d, 8.10 (d, 1H), 8.57 (d, 1H).

With the complex challenges of chemical substances, we look forward to future research findings about (S)-Butane-1,3-diol,belong chiral-oxygen-ligands compound

Reference£º
Patent; Merck Frosst Canada & Co.; US6046217; (2000); A;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate