Simple exploration of 616-43-3

Here is a brief introduction to this compound(616-43-3)Recommanded Product: 3-Methyl-1H-pyrrole, if you want to know about other compounds related to this compound(616-43-3), you can read my other articles.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Practical synthesis of thieno[3,2-b]pyrrole》. Authors are Matteson, Donald S.; Snyder, H. S..The article about the compound:3-Methyl-1H-pyrrolecas:616-43-3,SMILESS:CC1=CNC=C1).Recommanded Product: 3-Methyl-1H-pyrrole. Through the article, more information about this compound (cas:616-43-3) is conveyed.

cf. C.A. 51, 16422a. KCNS(200 g.) in 250 ml. MeOH at -75° (Dry Ice-Me2CO bath) stirred with dropwise addition of 159.6 g. Br in 125 ml. MeOH at -75° and the mixture kept below -60°, the thiocyanogen solution cooled to -75° and treated rapidly with 67.1 g. redistilled pyrrole in 250 ml. MeOH at -75° and the mixture stirred (with cooling bath removed) until the temperature rose to -25°, poured onto 2 kg. crushed ice and stirred with 300 g. NaCl, filtered through a 5-6-in. Buchner funnel and the ice and solids washed freely with H2O, the crude 3-thiocyanopyrrole (I) dried in vacuo and clarified in 100 ml. CH2Cl2 and 500 ml. methylcyclohexane (MgSO4 and Darco) at 40°, the colorless solution chilled and seeded, kept 17 hrs. at 0°, and chilled to -20° gave 62 g. I, m. 40-4°, infrared spectrum identical with that of I prepared from Cu(CNS)2 and pyrrole. I stains the skin deep red and may cause burning or itching sensations. The use of rubber gloves is mandatory and contacted areas should be washed immediately with soap and H2O and treated with 3% H2O2. Pyrrole (0.71 g.) in 75 ml. MeOH stirred at 0-5° (N atm.) with portionwise addition of 0.2 mole Cu(CNS)2 [on basis of (NCS)2 analysis] in a few min. and stirring continued 50 min. at 0-5°, the mixture filtered and the CuCNS washed with 50 ml. MeOH, the filtrate and washings poured onto 300 g. crushed ice and 100 g. NaCl added, the mixture filtered and the solids extracted with 225 ml. methylcyclohexane, the solution treated with Darco and cooled, seeded, and kept 17 hrs. at 0° gave 5.83 g. I, m. 41.5-43° (methylcyclohexane). As a route to 3-(alkylthio)pyrroles, attempts to isolate 3-mercaptopyrrole (II), 3-RSC4H4N (R = H) (IIa), were made but abandoned when a more promising way was found. Mg (1.87 g.) in 125 ml. MeOH (N atm.) at -20° kept 1 hr. with 6.2 g. I and the mixture poured into 500 ml. H2O, 200 ml. Et2O, and sufficient solid CO2 to dissolve the precipitated Mg(OH)2, the aqueous phase extracted with Et2O and the dried Et2O solutions evaporated in vacuo, the residue sublimed at 75°/0.1 mm. and the product (6.8 g.) recrystallized from PhMe, resublimed, recrystallized from dilute MeOH, and resublimed at 55-65°/0.1 mm. gave S-3-pyrrolyl O-Me thioimidocarbonate, II [R = C(:NH)OMe], m. 77-80°. I(6.21 g.) and 8.5 g. MeI in 50 ml. MeOH at -20° (N atm.) stirred with dropwise addition in 10 min. of 7.9 g. 85% KOH in 20 ml. H2O and 20 ml. MeOH and stirring continued 1.5 hrs. without cooling, the excess alkali neutralized with solid CO2 and the mixture poured into 500 ml. H2O containing 100 g. NaCl, the mixture extracted 3 times with 50 ml. CH2Cl2 and the dried solution (K2CO3) evaporated in vacuo, the residue distilled, and the product (5.1 g.) redistilled gave II (R = Me) (IIb), b12-13 88-9°. The excellent (90%) yield of IIb showed that the extremely unstable anion of IIa exists long enough to displace halide ions from a moderately active alkyl halide. I (62.1 g.) and 83.5 g. BrCH2CO2H in 500 ml. MeOH at -50° stirred rapidly with addition of 123 g. 85% KOH in 500 ml. 50% dilute MeOH in 10 min. and stirring continued 2 hrs. without cooling, the mixture brought to pH 8 with solid CO2 and the solvent evaporated in vacuo (warm H2O bath to avoid bumping), the solid residue taken up in 500 ml. CH2Cl2 and the mixture stirred with controlled addition of 375 ml. ice-cold 4N HCl, the aqueous phase extracted twice with 250 ml. CH2Cl2 and the combined dried CH2Cl2 solutions treated with Darco and filtered, the filtrate saturated with excess dry NH3, and filtered gave 78 g. II (R = CH2CO2NH4) (IIc), m. 127-33°, purified by treatment of IIc with N HCl and extraction with CH2Cl2, dehydration over MgSO4, and crystallization by treatment with anhydrous NH3 to give IIc, m. 125-33°; Ca salt-2H2O, m. 112-20° (decomposition). IIc in MeOH refluxed 20 hrs. with ZnCl2 and the product purified by extraction followed by distillation in a sublimation apparatus at 80°/0.1 mm. gave the liquid ester II (R = CH2CO2Me). BrCH2CH(OEt)2 failed to react with I under the above conditions and active alkyl halides such as PhCOCH2Br, BrCH2CO2Et, and ClCH2COCO2H appeared to be attacked by OH- more rapidly than was I and also failed to give sulfides. IIc (17.42 g.) and 250 ml. CH2Cl2 shaken with 30 ml. ice-cold 6N HCl and the aqueous phase extracted twice with 250 ml. CH2Cl2, the combined CH2Cl2 extracts dried (MgSO4) and treated with Darco, filtered and the filtrates combined with the 150 ml. CH2Cl2 washings of the Mg2SO4, the CH2Cl2 solution added dropwise in 50 min. to the most vigorously agitated region of 400 g. well-stirred polyphosphoric acid at 120-3° with free vaporization of the CH2Cl2, the mixture cooled below 100° and added slowly with stirring to 1200 ml. H2O and 750 ml. EtOAc, the stirring continued 30 min. and the aqueous layer extracted with 250 ml. EtOAc, the aqueous layer saturated with 300 g. NaCl and extracted twice with 250 ml. EtOAc, the emulsion layer neutralized with Na2CO3 and warmed on a steam bath prior to a 3-fold extraction with 100 ml. portions of EtOAc, the combined EtOAc solutions washed with aqueous NaHCO3 and dried over MgSO4, evaporated in vacuo, and the residue sublimed twice at 120°/0.1 mm. gave 5.0 g. product, m. 183-8.5°, purified by sublimation twice, recrystallization twice from aqueous HCONMe2 and sublimation twice, treatment with Darco, and recrystallization from MeOH to give 2H,3H-thieno[3,2-b]pyrrol-3-one (III), m. 187-90°, λ 330, 303 (min.), 279, 236 (min.) mμ (ε 7400, 3900, 16,000, 500, 95% alc.), ν 3140, 1635 cm.-1 (Nujol). III (0.28 g.) in 35 ml. 95% alc. refluxed 1 hr. with 2.5 g. Raney Ni (W6) and the solution filtered, the residue washed with alc. and the alc. solutions evaporated in vacuo, the residue sublimed, and the product (0.06 g.) recrystallized from H2O gave 23 mg. 2-acetylpyrrole, m. 89-91°, identical with that prepared from C4H4NMgBr and AcCl. III (1.39 g.) and 1.5 g. NaBH4 in 50 ml. MeOH refluxed 16 hrs. under N and the mixture poured into 200 ml. 15% aqueous NaCl, extracted 3 times with 50 ml. CH2Cl2 and the dried extract evaporated, the residue sublimed at 6070°/0.1 mm., and the 0.76 g. product recrystallized from Et2O-C5H12 at -70° and resublimed 3 times gave thieno[3,2-b]pyrrole, m. 25-8°, λ 260, 233 (min.) mμ (ε 11,800, 4900, 95% alc.), infrared spectrum and that of a less pure sample synthesized from thiophene (cf. Snyder, et al., C.A. 51, 13846b) given.

Here is a brief introduction to this compound(616-43-3)Recommanded Product: 3-Methyl-1H-pyrrole, if you want to know about other compounds related to this compound(616-43-3), you can read my other articles.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

New learning discoveries about 56413-95-7

Here is a brief introduction to this compound(56413-95-7)Computed Properties of C6Cl2N4, if you want to know about other compounds related to this compound(56413-95-7), you can read my other articles.

The three-dimensional configuration of the ester heterocycle is basically the same as that of the carbocycle. Compound: 5,6-Dichloropyrazine-2,3-dicarbonitrile(SMILESS: N#CC1=NC(Cl)=C(Cl)N=C1C#N,cas:56413-95-7) is researched.Recommanded Product: cis-4-Aminocyclohexane carboxylic acid. The article 《Preparation of magnesium azaphthalocyanines by cyclotetramerization of S-substituted 4,5-disulfanylpyrazine-2,3-dicarbonitriles》 in relation to this compound, is published in Acta Chemica Scandinavica. Let’s take a look at the latest research on this compound (cas:56413-95-7).

Four novel S-substituted 4,5-disulfanylpyrazine-2,3-dicarbonitriles were obtained in a multistep synthesis from diaminomaleonitrile. Two of these dicarbonitriles, with Et or benzyl S-substituents, give pure Mg azaphthalocyanines in good yields when reacted with Mg propoxide in PrOH and dioxane. Aromatic S-substituents are less stable during the reaction conditions used for cyclizations, and product mixtures were obtained.

Here is a brief introduction to this compound(56413-95-7)Computed Properties of C6Cl2N4, if you want to know about other compounds related to this compound(56413-95-7), you can read my other articles.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

What I Wish Everyone Knew About 3685-23-2

Here is a brief introduction to this compound(3685-23-2)Recommanded Product: cis-4-Aminocyclohexane carboxylic acid, if you want to know about other compounds related to this compound(3685-23-2), you can read my other articles.

Epoxy compounds usually have stronger nucleophilic ability, because the alkyl group on the oxygen atom makes the bond angle smaller, which makes the lone pair of electrons react more dissimilarly with the electron-deficient system. Compound: cis-4-Aminocyclohexane carboxylic acid, is researched, Molecular C7H13NO2, CAS is 3685-23-2, about Cytotoxic T lymphocyte epitope analogues containing cis- or trans-4-aminocyclohexanecarboxylic acid residues.Recommanded Product: cis-4-Aminocyclohexane carboxylic acid.

In order to improve the immunotherapeutical potential of H-Cys-Leu-Gly-Gly-Leu-Leu-Thr-Met-Val-OH (CLG) peptide, an Epstein-Barr virus (EBV) subdominant epitope derived from the membrane protein LMP2, we have synthesized and tested CLG analogs containing cis- and/or trans-4-aminocyclohexanecarboxylic acid (ACCA) replacing Gly-Gly and/or Thr-Met dipeptide units. All pseudopeptides were tested for metabolic stability and for their capacity to bind HLA-A2 mols. and to sensitize target cells to lysis. All new compounds exhibited higher enzymic resistance compared to the original CLG and some trans-ACCA-derivatives were able to associate HLA-A2 and to efficiently stimulate CTL responses directed against the CLG natural epitope.

Here is a brief introduction to this compound(3685-23-2)Recommanded Product: cis-4-Aminocyclohexane carboxylic acid, if you want to know about other compounds related to this compound(3685-23-2), you can read my other articles.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Some scientific research tips on 616-43-3

Here is a brief introduction to this compound(616-43-3)Product Details of 616-43-3, if you want to know about other compounds related to this compound(616-43-3), you can read my other articles.

Product Details of 616-43-3. So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic. Compound: 3-Methyl-1H-pyrrole, is researched, Molecular C5H7N, CAS is 616-43-3, about The radiation chemistry of some simple pyrroles.

Pyrrole, monomethylpyrroles, and 2,5-dimethylpyrrole were γ-irradiated. Gaseous, liquid and residual products were determined The products indicate that several types of reactions occur including ring rupture, cleavage of bonds external to the pyrrole ring, ring substitution, and intramol. rearrangement. A brief comparison is made among radiolysis, photolysis, mass spectral ionization, and pyrolysis reactions of pyrrole compounds

Here is a brief introduction to this compound(616-43-3)Product Details of 616-43-3, if you want to know about other compounds related to this compound(616-43-3), you can read my other articles.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

The effect of the change of synthetic route on the product 616-43-3

Here is a brief introduction to this compound(616-43-3)Related Products of 616-43-3, if you want to know about other compounds related to this compound(616-43-3), you can read my other articles.

Duvall, J. J.; Jensen, H. B. published the article 《The radiation chemistry of some simple pyrroles》. Keywords: radiation chem pyrrole.They researched the compound: 3-Methyl-1H-pyrrole( cas:616-43-3 ).Related Products of 616-43-3. Aromatic heterocyclic compounds can be divided into two categories: single heterocyclic and fused heterocyclic. In addition, there is a lot of other information about this compound (cas:616-43-3) here.

Pyrrole, monomethylpyrroles, and 2,5-dimethylpyrrole were γ-irradiated. Gaseous, liquid and residual products were determined The products indicate that several types of reactions occur including ring rupture, cleavage of bonds external to the pyrrole ring, ring substitution, and intramol. rearrangement. A brief comparison is made among radiolysis, photolysis, mass spectral ionization, and pyrolysis reactions of pyrrole compounds

Here is a brief introduction to this compound(616-43-3)Related Products of 616-43-3, if you want to know about other compounds related to this compound(616-43-3), you can read my other articles.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Some scientific research tips on 3685-23-2

Here is a brief introduction to this compound(3685-23-2)Synthetic Route of C7H13NO2, if you want to know about other compounds related to this compound(3685-23-2), you can read my other articles.

The preparation of ester heterocycles mostly uses heteroatoms as nucleophilic sites, which are achieved by intramolecular substitution or addition reactions. Compound: cis-4-Aminocyclohexane carboxylic acid( cas:3685-23-2 ) is researched.Synthetic Route of C7H13NO2.Patel, R. K.; Gisvold, Ole published the article 《The synthesis of some simple n-alkyl esters of 4-amino-1-cyclohexanecarboxylic acid》 about this compound( cas:3685-23-2 ) in Journal of the American Pharmaceutical Association (1912-1977). Keywords: ANESTHETICS; CYCLOHEXANES. Let’s learn more about this compound (cas:3685-23-2).

The following esters of cis-4-amino-1-cyclohexanecarboxylic acid were prepared by treating the crude acid chloride with the appropriate anhydrous alc. and recrystallizing the resulting ester from the alc. used in its preparation: Et, m. 193-4°, Pr, m. 184-5°, Bu, m. 174-5°, and pentyl, m. 169-70°. A preliminary test indicated that these compounds had anesthetic properties.

Here is a brief introduction to this compound(3685-23-2)Synthetic Route of C7H13NO2, if you want to know about other compounds related to this compound(3685-23-2), you can read my other articles.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Why do aromatic interactions matter of compound: 616-43-3

Here is a brief introduction to this compound(616-43-3)Application of 616-43-3, if you want to know about other compounds related to this compound(616-43-3), you can read my other articles.

Heterocyclic compounds can be divided into two categories: alicyclic heterocycles and aromatic heterocycles. Compounds whose heterocycles in the molecular skeleton cannot reflect aromaticity are called alicyclic heterocyclic compounds. Compound: 616-43-3, is researched, Molecular C5H7N, about 14N nuclear quadrupole coupling and methyl internal rotation in 3-methylpyrrole investigated by microwave spectroscopy, the main research direction is methylpyrrole nuclear quadrupole coupling.Application of 616-43-3.

The mol. structure of 3-methylpyrrole in the gas phase has been determined using a combination of high-resolution spectroscopy and quantum chem. calculations The rotational spectrum was recorded using a mol. jet Fourier transform microwave spectrometer covering the frequency range from 2.0 to 26.5 GHz. The exptl. data were analyzed using the programs XIAM and BELGI-Cs-hyperfine. Because the internal rotor axis accidentally lies along the principal a-axis of inertia, the rho axis system and the principal axis system coincide, enabling a direct comparison of the fits. With the program XIAM, the rotational constants A = 8631.1629(12), B = 3342.19750(43), and C = 2445.73846(42) MHz were obtained. Torsional splittings due to internal rotation of the Me group were observed, leading to the determination of the V3 potential of 245.92445(31) cm-1. Hyperfine splittings arising from the nuclear quadrupole coupling of the 14N nucleus could be resolved, and the quadrupole coupling constants χaa = 1.4159(49) and χbb – χcc = 4.1622(86) MHz were found.

Here is a brief introduction to this compound(616-43-3)Application of 616-43-3, if you want to know about other compounds related to this compound(616-43-3), you can read my other articles.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Introduction of a new synthetic route about 3685-23-2

Here is a brief introduction to this compound(3685-23-2)Category: chiral-oxygen-ligands, if you want to know about other compounds related to this compound(3685-23-2), you can read my other articles.

Category: chiral-oxygen-ligands. Aromatic compounds can be divided into two categories: single heterocycles and fused heterocycles. Compound: cis-4-Aminocyclohexane carboxylic acid, is researched, Molecular C7H13NO2, CAS is 3685-23-2, about cis-4-[[[(2-Chloroethyl)nitrosoamino]carbonyl]methylamino]cyclohexanecarboxylic acid, a nitrosourea with latent activity against an experimental solid tumor. Author is Johnston, Thomas P.; McCaleb, George S.; Rose, William C.; Montgomery, John A..

The title compound (I) was synthesized in five steps from cis-4-aminocyclohexanecarboxylic acid via the N-tosylated intermediate II. I, which is incapable of the facile decomposition that characterizes the clin. useful nitrosoureas, effected a significant cure rate of both early and established murine Lewis lung carcinoma, even though its in vitro half-life was ∼5.5 times that of the unmethylated parent compound This is the first observation of latent activity of a nitrosourea against an exptl. solid tumor.

Here is a brief introduction to this compound(3685-23-2)Category: chiral-oxygen-ligands, if you want to know about other compounds related to this compound(3685-23-2), you can read my other articles.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Flexible application of in synthetic route 616-43-3

Here is a brief introduction to this compound(616-43-3)Quality Control of 3-Methyl-1H-pyrrole, if you want to know about other compounds related to this compound(616-43-3), you can read my other articles.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Synthesis of α,α’-unsubstituted pyrroles》. Authors are Plieninger, H.; Buhler, W..The article about the compound:3-Methyl-1H-pyrrolecas:616-43-3,SMILESS:CC1=CNC=C1).Quality Control of 3-Methyl-1H-pyrrole. Through the article, more information about this compound (cas:616-43-3) is conveyed.

α,α’-Unsubstituted pyrroles were made as intermediates for the synthesis of porphyrins and bile pigments. 3-Methylpyrrole (I) and 3,4-dimethylpyrrole were obtained in 40% yield (based on the starting acetal) from MeCOCH2CH(OMe)2 (II) and MeCOCHMeCH(OMe)2, resp. II cyanohydrin was condensed with dihydropyrene (III) to give MeC(CN)(OCH.CH2.CH2.CH2.CH2.O)CH2CH(OMe)2 which was reduced to the corresponding amine with LiAlH4. Acidification liberated the pyrrole but because of further transformation in the presence of acid, it could not be isolated. Acetylation of the amine, followed by treatment with MeC6H4SO3H in absolute Me2CO, split off III, liberated the aldehyde group and gave I acetyl derivative in one step. I was obtained by careful alk. hydrolysis.

Here is a brief introduction to this compound(616-43-3)Quality Control of 3-Methyl-1H-pyrrole, if you want to know about other compounds related to this compound(616-43-3), you can read my other articles.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Decrypt The Mystery Of 56413-95-7

Here is a brief introduction to this compound(56413-95-7)Product Details of 56413-95-7, if you want to know about other compounds related to this compound(56413-95-7), you can read my other articles.

Most of the natural products isolated at present are heterocyclic compounds, so heterocyclic compounds occupy an important position in the research of organic chemistry. A compound: 56413-95-7, is researched, SMILESS is N#CC1=NC(Cl)=C(Cl)N=C1C#N, Molecular C6Cl2N4Journal, Dyes and Pigments called The synthesis and cyclotetramerisation reactions of aryloxy-, arylalkyloxy-substituted pyrazine-2,3-dicarbonitriles and spectroelectrochemical properties of octakis(hexyloxy)-pyrazinoporphyrazine, Author is Uslu Kobak, Rabia Zeynep; Oeztuerk, Egemen Selcuk; Koca, Atif; Guel, Ahmet, the main research direction is arylalkyloxy substituted pyrazine dicarbonitrile dye synthesis cyclotetramerization.Product Details of 56413-95-7.

Novel, aryloxy- and arylalkyloxy-substituted pyrazine dicarbonitriles were synthesized from 5,6-dichloropyrazine-2,3-dicarbonitrile and the corresponding phenol/alc. derivatives Cyclotetramerisation of these pyrazine derivatives to form metal pyrazinoporphyrazines in the presence of appropriate metal salts in different solvents such as DMF, quinoline, 2-dimethylaminoethanol and n-hexanol, resulted in decomposition products with the exception of the latter solvent which lead to mainly octakis(alkyloxy)pyrazinoporphyrazines. Cyclic voltammetry and differential pulsed voltammetry of the complexes indicated that cobalt pyrazinoporphyrazine displayed both ligand and metal-based redox processes while zinc and copper derivatives exhibited only ligand-based redox processes. The redox processes of the pyrazinoporphyrazines shifted significantly towards pos. potentials compared to those of the common phthalocyanines. The novel compounds were characterized using elemental anal. and spectral techniques.

Here is a brief introduction to this compound(56413-95-7)Product Details of 56413-95-7, if you want to know about other compounds related to this compound(56413-95-7), you can read my other articles.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate