Simple exploration of 4254-15-3

Sometimes chemists are able to propose two or more mechanisms that are consistent with the available data. COA of Formula: C3H8O2, If a proposed mechanism predicts the wrong experimental rate law, however, the mechanism must be incorrect.Welcome to check out more blogs about 4254-15-3, in my other articles.

One of the major reasons for studying chemical kinetics is to use measurements of the macroscopic properties of a system, COA of Formula: C3H8O2, such as the rate of change in the concentration of reactants or products with time.In a article, mentioned the application of 4254-15-3, Name is (S)-Propane-1,2-diol, molecular formula is C3H8O2

Regio- and stereoselective glucosylation of diols by sucrose phosphorylase using sucrose or glucose 1-phosphate as glucosyl donor

Previously it has been shown that glycerol can be regioselectively glucosylated by sucrose phosphorylase from Leuconostoc mesenteroides to form 2-O-alpha-d-glucopyranosyl-glycerol (Goedl et al., Angew. Chem. Int. Ed. 47 (2008) 10086-10089). A series of compounds related to glycerol were investigated by us to determine the scope of the alpha-glucosylation reaction of sucrose phosphorylase. Both sucrose and glucose 1-phosphate (G1P) were applied as glucosyl donor. Mono-alcohols were not accepted as substrates but several 1,2-diols were readily glucosylated, proving that the vicinal diol unit is crucial for activity. The smallest substrate that was accepted for glucosylation appeared to be ethylene glycol, which was converted to the monoglucoside for 69%. Using high acceptor and donor concentrations (up to 2.5 M), sucrose or G1P hydrolysis (with H2O being the ‘acceptor’) can be minimised. In the study cited above, a preference for glucosylation of glycerol on the 2-position has been observed. For 1,2-propanediol however, the regiochemistry appeared to be dependent on the configuration of the substrate. The (R)-enantiomer was preferentialy glucosylated on its 1-position (ratio 2.5:1), whereas the 2-glucoside is the major product for (S)-1,2-propanediol (1:4.1). d.e. ps of 71-83% were observed with a preference for the (S)-enantiomer of the glucosides of 1,2-propanediol and 1,2-butanediol and the (R)-enantiomer of the glucoside of 3-methoxy-1,2-propanediol. This is the first example of stereoselective glucosylation of a non-natural substrate by sucrose phosphorylase. 3-Amino-1,2-propanediol, 3-chloro-1,2-propanediol, 1-thioglycerol and glyceraldehyde were not accepted as substrates. Generally, the glucoside yield is higher when sucrose is used as a donor rather than G1P, due to the fact that the released phosphate is a stronger inhibitor of the enzyme (in case of G1P) than the released fructose (in case of sucrose). Essentially the same results are obtained with sucrose phosphorylase from Bifidobacterium adolescentis.

Sometimes chemists are able to propose two or more mechanisms that are consistent with the available data. COA of Formula: C3H8O2, If a proposed mechanism predicts the wrong experimental rate law, however, the mechanism must be incorrect.Welcome to check out more blogs about 4254-15-3, in my other articles.

Reference£º
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate