New learning discoveries about 3685-23-2

As far as I know, this compound(3685-23-2)Computed Properties of C7H13NO2 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Activation of the amide group by acylation. V. Inclusion of amino acid residues into linear and cyclic peptides》. Authors are Antonov, V. K.; Agadzhanyan, Ts. E.; Telesnina, T. R.; Shemyakin, M. M..The article about the compound:cis-4-Aminocyclohexane carboxylic acidcas:3685-23-2,SMILESS:N[C@H]1CC[C@H](CC1)C(O)=O).Computed Properties of C7H13NO2. Through the article, more information about this compound (cas:3685-23-2) is conveyed.

cf. CA 63, 16255f. Dipeptides and lactams acylated at the amide-N by amino acid residues were shown to isomerize to give corresponding linear or cyclic peptides through intermediate azocyclols, which can also undergo dehydration to form acylamidines. The transannular interaction of amide groups in 9-10-membered cyclopeptides can also result in similar acylamidines; such a process takes place during mass spectrometry of cyclopeptides. N-Phthaloylglycylglycine Et ester and azidoacetyl chloride refluxed in MePh 10 hrs. gave after filtration and evaporation 46% N-azidoacetyl-N’-phthaloylglycylglycine Et ester, m. 115-16°. Similarly were prepared 36% N-azidoacetyl-N’-phthaloylglycyl-L-leucine Et ester, m. 118-19°. The former treated with 28% HBr in AcOH overnight in the cold, diluted with Et2O, and the resulting precipitate (I) treated with Et3N in tetrahydrofuran gave 70% N-phthaloylglycylglycylglycine Et ester, m. 228-9°. Similarly was prepared N-phthaloylglycylglycyl-L-leucine Et ester, m. 155-6°. I and H2O in 5 min. gave 73% 2-phthaloylaminomethyl-3-carbethoxymethyl-Δ1-imidazolin-4-one, m. 153-4°. Similarly was obtained 63% 2-phthaloylaminomethyl-3-(1-carbethoxy-3-methylbutyl)-Δ1-imidazolin-4-one, m. 117-18°. Carbobenzoxy-β-alanyl chloride and butyrolactam in Et2O were treated at 5° with Et3N to yield in 1 day at 20° 58% N-carbobenzoxy-β-alanylbutyrolactam (II), m. 94-5°. Similar reaction with valerolactam gave N-carbobenzoxy-β-alanylvalerolactam, m. 60-1°. Similarly was prepared 50% N-carbobenzoxy-β-alanylcaprolactam, m. 60-1°. II hydrogenated over Pd in Et2O gave 38% cyclo(β-alanyl-γ-aminobutyryl) (III), m. 173°, also formed from II by treatment with 27% HBr in AcOH 45 min.; HBr salt m. 119-20°. Similarly was obtained cyclo(β-alanyl-δ-aminovaleryl) (IV), m. 187°, and 61% cyclo(β-alanyl-ε-aminocaproyl) (V), m. 259°. III heated in xylene 1 hr. under azeotropic conditions of H2O removal gave 68% 1,2-trimethylene-6-oxo-1,4,5,6-tetrahydropyrimidine (IIIa), b12 152-4°. IV similarly gave 45% 1,2-tetramethylene-6-oxo-1,4,5,6-tetrahydropyrimidine (IVa), b12 160° (no reaction took place in ο-Cl2C6H4 in 4 hrs. with V). III heated with H2O 5 min. gave 80% N-[1-aza-1-cyclopenten-2-yl]-3-aminopropionic acid (VI), decomposed 186-7°. H2NCH2CH2CO2H in MeOH was treated with O-methylbutyrolactam and gave after heating 10 min. 97% VI. Similarly O-methylvalerolactam gave 95% N-[1-aza-1-cyclohexen-2-yl]-3-aminopropionic acid, m. 186°, which heated with removal of H2O in Cl2C6H4 gave 91% IVa. Similarly O-methylcaprolactam gave 93% N-[1-aza-1-cyclohepten-2-yl]-3-aminopropionic acid, m. 200-1°, which heated in Cl2C6H4 gave 12% cyclo(β-alanyl-ε-aminocapropyl) and 80% 1,2-pentamethylene-6-oxo-1,4,5,6-tetrahydropyrimidine, b10 185-90°, m. 35°. Heating VI in xylene with removal of H2O gave IIIa. The latter kept with H2O 2 days gave VI, while H2O-Ag2O gave 32% VI and 54% cyclo(β-alanyl-γ-aminobutyryl). The above analogs of VI reacted similarly.

As far as I know, this compound(3685-23-2)Computed Properties of C7H13NO2 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Chemical Research in 3685-23-2

As far as I know, this compound(3685-23-2)Application In Synthesis of cis-4-Aminocyclohexane carboxylic acid can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Application In Synthesis of cis-4-Aminocyclohexane carboxylic acid. The mechanism of aromatic electrophilic substitution of aromatic heterocycles is consistent with that of benzene. Compound: cis-4-Aminocyclohexane carboxylic acid, is researched, Molecular C7H13NO2, CAS is 3685-23-2, about Highly selective preparation of trans-4-aminocyclohexanecarboxylic acid from cis-isomer over Raney nickel catalyst. Author is Gobolos, Sandor; Banka, Zoltan; Toth, Zoltan; Szammer, Janos; Margitfalvi, Jozsef L..

4-Amino-benzoic acid was hydrogenated to 4-aminocyclohexanecarboxylic acid over alumina supported 5 weight% Ru and Rh catalysts. Complete ring saturation was achieved in 2 weight % NaOH-H2O at 80-100 °C, 10 MPa H2, and 5 h however, the ratio of trans/cis stereoisomers of the product was only between 1/3-1/1. The raw reaction mixture was further processed in the presence of a com. Raney nickel catalyst at 130°C, 100 bar H2 for 5 h. In this alkali-mediated isomerization the trans/cis isomer ratio was 7/3. The cis isomer was isolated by fractional crystallization, and then reacted on Raney nickel catalysts in 2%NaOH-H2O at 120-140°C, 1 MPa H2 for 5 h to obtain the trans isomer with a yield of ca. 70%. The two-step synthesis resulted in trans-4-aminocyclohexanecarboxylic acid with a yield above 90%. Catalytic tests were performed in a high-throughput reactor system equipped with 16 mini autoclaves.

As far as I know, this compound(3685-23-2)Application In Synthesis of cis-4-Aminocyclohexane carboxylic acid can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Continuously updated synthesis method about 3685-23-2

In some applications, this compound(3685-23-2)Formula: C7H13NO2 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Formula: C7H13NO2. Aromatic heterocyclic compounds can also be classified according to the number of heteroatoms contained in the heterocycle: single heteroatom, two heteroatoms, three heteroatoms and four heteroatoms. Compound: cis-4-Aminocyclohexane carboxylic acid, is researched, Molecular C7H13NO2, CAS is 3685-23-2, about Synthesis and properties of 2-azabicyclo[2:2:2]octan-3-one and 6-azabicyclo[3:2:1]octan-7-one. Author is Palaima, A.; Staniulyte, Z.; Klimavicius, A..

Optimal reaction conditions for the synthesis of lactams of cis-3- and -4-ACH acids and their derivatives were determined 1H NMR spectral data confirmed different configuration of lactams of cis-3- and cis-4-derivatives Possibility to apply lactams for the separation of cis- and trans-isomers was investigated.

In some applications, this compound(3685-23-2)Formula: C7H13NO2 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

More research is needed about 3685-23-2

In addition to the literature in the link below, there is a lot of literature about this compound(cis-4-Aminocyclohexane carboxylic acid)Category: chiral-oxygen-ligands, illustrating the importance and wide applicability of this compound(3685-23-2).

Category: chiral-oxygen-ligands. Aromatic compounds can be divided into two categories: single heterocycles and fused heterocycles. Compound: cis-4-Aminocyclohexane carboxylic acid, is researched, Molecular C7H13NO2, CAS is 3685-23-2, about Liquid-phase hydrogenation of some aromatic acids on ruthenium catalysts. Author is Ponomarev, A. A.; Ryzhenko, L. M.; Smirnova, N. S..

Using 10% RuO2 or Ru on activated the hydrogenation was carried out at 100-20° in H2O or in aqueous alk. solutions The following compounds gave 60-99% yields of the following products (starting compound and product given): p-H2NC6H4CO2H, p-aminohexa-hydrobenzoic acid (I); p-O2NC6H4CO2H, I; m-H2NC6H4CO2H, m-aminohexahydrobenzoic acid (II), m-O2NC6H4CO2H, II; m-NaOC6H4CO2Na, m-hydroxyhexahydrobenzoic acid; disodium 2-methylterephthalate, 2-methylhexahydroterephthalic acid.

In addition to the literature in the link below, there is a lot of literature about this compound(cis-4-Aminocyclohexane carboxylic acid)Category: chiral-oxygen-ligands, illustrating the importance and wide applicability of this compound(3685-23-2).

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Share an extended knowledge of a compound : 56413-95-7

In addition to the literature in the link below, there is a lot of literature about this compound(5,6-Dichloropyrazine-2,3-dicarbonitrile)Formula: C6Cl2N4, illustrating the importance and wide applicability of this compound(56413-95-7).

In general, if the atoms that make up the ring contain heteroatoms, such rings become heterocycles, and organic compounds containing heterocycles are called heterocyclic compounds. An article called Synthesis of mono-, di-, tri- and tetracarboxy azaphthalocyanines as potential dark quenchers, published in 2011, which mentions a compound: 56413-95-7, Name is 5,6-Dichloropyrazine-2,3-dicarbonitrile, Molecular C6Cl2N4, Formula: C6Cl2N4.

Mono-, di-, tri- and tetracarboxy-substituted metal-free azaphthalocyanines (AzaPc) were synthesized from 5,6-bis(diethylamino)pyrazine-2,3-dicarbonitrile and 6-(5,6-dicyano-3-(diethylamino)pyrazin-2-ylamino)hexanoic acid using a statistical condensation approach. AzaPc bearing eight diethylamino peripheral substituents was also isolated from the mixture Anal. of the distribution of congeners in the statistical mixture using optimized HPLC method (Phenomenex Synergy RP Fusion column, acetonitrile/tetrahydrofuran/water (pH 5.5) 50:20:30) was performed. The anal. showed optimal ratios of starting materials to be 3:1 for AAAB, 1:3 for ABBB and 1:1 for AABB/ABAB types of the congeners. The distribution of the congeners corresponded well with calculated values indicating similar reactivity of both starting materials and no steric constraint between adjacent isoindole units in the AzaPc ring. All studied AzaPc showed no fluorescence, extremely low singlet oxygen quantum yields (Φ Δ < 0.005) in monomeric form and strong absorption in a wide range from 300 nm to almost 700 nm. Such properties are highly promising for future study of these compounds as dark quenchers of fluorescence in DNA hybridization probes. In addition to the literature in the link below, there is a lot of literature about this compound(5,6-Dichloropyrazine-2,3-dicarbonitrile)Formula: C6Cl2N4, illustrating the importance and wide applicability of this compound(56413-95-7).

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Discovery of 3685-23-2

This literature about this compound(3685-23-2)Application of 3685-23-2has given us a lot of inspiration, and I hope that the research on this compound(cis-4-Aminocyclohexane carboxylic acid) can be further advanced. Maybe we can get more compounds in a similar way.

Epoxy compounds usually have stronger nucleophilic ability, because the alkyl group on the oxygen atom makes the bond angle smaller, which makes the lone pair of electrons react more dissimilarly with the electron-deficient system. Compound: cis-4-Aminocyclohexane carboxylic acid, is researched, Molecular C7H13NO2, CAS is 3685-23-2, about Effects of Atractylodes Oil on Inflammatory Response and Serum Metabolites in Adjuvant Arthritis Rats.Application of 3685-23-2.

Atractylodes Rhizoma is one of two principal components in Ermiaosan, a well-known traditional Chinese medicine for the treatment of rheumatoid arthritis (RA). Atractylodes oil (AO) represents a potential alternative treatment for RA. The purpose of this study was to investigate the effect of AO in rats with Adjuvant Arthritis (AA) by exploration of changes in serum metabolites using gas chromatog.-mass spectrometry (GC-MS). Foot thickness and arthritis score, ankle joint pathol. structure, the concentrations of TNF-α, IL-1β, IL-6, IL-17 and the expression of MMPs in ankle joint tissue were measured as indicators of efficacy of treatment using AO. In addition, multivariate statistical anal. was used to identify differential production of metabolites and biomarkers, and to analyze metabolic pathways. The results demonstrate that administration of AO resulted in a good therapeutic effect in the AA rat model, with significantly improved joint swelling, reduced joint score, and inhibition of inflammation, synovial pannus hyperplasia, and bone and cartilage destruction. Furthermore, AO was found to exert its effect against rheumatoid arthritis principally by differentially affecting 11 metabolites and six metabolic pathways, predominantly related to abnormal amino acid metabolism, in addition to energy-related metabolic pathways. This study evaluated the capability of AO to effectively treat AA rats, providing a novel strategy for the treatment of RA.

This literature about this compound(3685-23-2)Application of 3685-23-2has given us a lot of inspiration, and I hope that the research on this compound(cis-4-Aminocyclohexane carboxylic acid) can be further advanced. Maybe we can get more compounds in a similar way.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Brief introduction of 56413-95-7

This literature about this compound(56413-95-7)Product Details of 56413-95-7has given us a lot of inspiration, and I hope that the research on this compound(5,6-Dichloropyrazine-2,3-dicarbonitrile) can be further advanced. Maybe we can get more compounds in a similar way.

Most of the natural products isolated at present are heterocyclic compounds, so heterocyclic compounds occupy an important position in the research of organic chemistry. A compound: 56413-95-7, is researched, SMILESS is N#CC1=NC(Cl)=C(Cl)N=C1C#N, Molecular C6Cl2N4Journal, Journal of Porphyrins and Phthalocyanines called Syntheses of Octa(dialkylamino)azaphthalocyanines, Author is Morkved, Eva H.; Kjosen, Helge; Ossletten, Hege; Erchak, Nikolai, the main research direction is azaphthalocyanine dialkylamino copper nickel preparation; transition metal dialkylamino azaphthalocyanine preparation; pyrazine diiminoimide cyclization dialkylamino azaphthalocyanine preparation.Product Details of 56413-95-7.

Ni(II) octa(4-morpholinyl)- (11a) and Cu(II) octa(1-pyrrolidinyl)- (11b) azaphthalocyanines were prepared from the corresponding pyrazine diiminoimides (10). The precursor pyrazine dicarbonitriles (2) gave 6-cyanopyrazine-5-alkyl carboximidates (3-9) as stable intermediates when reacted with NH3 and catalytic amounts of Na alkoxide in alcs. 3-9 Were converted to the diiminoimides 10 upon reflux in PrOH or BuOH for several hours. This unusual reaction pattern was observed for pyrazine-2,3-dicarbonitriles (2) with morpholine, thiomorpholine, piperidine or pyrrolidine substituted in the 5- and 6-positions.

This literature about this compound(56413-95-7)Product Details of 56413-95-7has given us a lot of inspiration, and I hope that the research on this compound(5,6-Dichloropyrazine-2,3-dicarbonitrile) can be further advanced. Maybe we can get more compounds in a similar way.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

The Absolute Best Science Experiment for 3685-23-2

This literature about this compound(3685-23-2)Recommanded Product: 3685-23-2has given us a lot of inspiration, and I hope that the research on this compound(cis-4-Aminocyclohexane carboxylic acid) can be further advanced. Maybe we can get more compounds in a similar way.

In organic chemistry, atoms other than carbon and hydrogen are generally referred to as heteroatoms. The most common heteroatoms are nitrogen, oxygen and sulfur. Now I present to you an article called Formation and pharmacokinetics of the active drug candoxatrilat in mouse, rat, rabbit, dog and man following administration of the prodrug candoxatril, published in 1997-10-31, which mentions a compound: 3685-23-2, mainly applied to candoxatril candoxatrilat pharmacokinetics species, Recommanded Product: 3685-23-2.

Candoxatrilat, an active neutral endopeptidase inhibitor, was released rapidly from the inactive prodrug candoxatril in vivo in the mouse, rat, rabbit, dog and man. Oral doses of [14C]candoxatril were cleared rapidly, mostly by ester hydrolysis to candoxatrilat, in the mouse, dog and man. A complementary i.v. study in man with [14C]candoxatrilat showed that the active drug was virtually completely renally cleared. Neither candoxatril nor candoxatrilat underwent chiral inversion in man. The systemic availability of candoxatrilat from the oral prodrug was estimated to be 88, 53, 42, 17 and 32% in the mouse, rat, rabbit, dog and man resp. Plasma clearance of candoxatril was too rapid to enable pharmacokinetic parameter calculation in mice and rabbits; for man, the apparent oral clearance was 57.9 mL/min/kg and the elimination half-life was 0.46 h. For i.v. candoxatrilat, total plasma clearance values were 32, 15, 5.5, 5.8 and 1.9 mL/min/kg for the mouse, rat, rabbit, dog and man, resp. Renal clearance values were 8.7, 7.2, 2.9 and 1.7 mL/min/kg for the mouse, rat, dog and man, resp., and these approximated the resp. glomerular filtration rates. Allometric scaling with respect to body weight across the species allowed reasonable prediction of the above 2 clearance parameters in man.

This literature about this compound(3685-23-2)Recommanded Product: 3685-23-2has given us a lot of inspiration, and I hope that the research on this compound(cis-4-Aminocyclohexane carboxylic acid) can be further advanced. Maybe we can get more compounds in a similar way.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

More research is needed about 3685-23-2

This literature about this compound(3685-23-2)Recommanded Product: cis-4-Aminocyclohexane carboxylic acidhas given us a lot of inspiration, and I hope that the research on this compound(cis-4-Aminocyclohexane carboxylic acid) can be further advanced. Maybe we can get more compounds in a similar way.

Recommanded Product: cis-4-Aminocyclohexane carboxylic acid. The protonation of heteroatoms in aromatic heterocycles can be divided into two categories: lone pairs of electrons are in the aromatic ring conjugated system; and lone pairs of electrons do not participate. Compound: cis-4-Aminocyclohexane carboxylic acid, is researched, Molecular C7H13NO2, CAS is 3685-23-2, about Formation and pharmacokinetics of the active drug candoxatrilat in mouse, rat, rabbit, dog and man following administration of the prodrug candoxatril. Author is Kaye, B.; Brearley, C. J.; Cussans, N. J.; Herron, M.; Humphrey, M. J.; Mollatt, A. R..

Candoxatrilat, an active neutral endopeptidase inhibitor, was released rapidly from the inactive prodrug candoxatril in vivo in the mouse, rat, rabbit, dog and man. Oral doses of [14C]candoxatril were cleared rapidly, mostly by ester hydrolysis to candoxatrilat, in the mouse, dog and man. A complementary i.v. study in man with [14C]candoxatrilat showed that the active drug was virtually completely renally cleared. Neither candoxatril nor candoxatrilat underwent chiral inversion in man. The systemic availability of candoxatrilat from the oral prodrug was estimated to be 88, 53, 42, 17 and 32% in the mouse, rat, rabbit, dog and man resp. Plasma clearance of candoxatril was too rapid to enable pharmacokinetic parameter calculation in mice and rabbits; for man, the apparent oral clearance was 57.9 mL/min/kg and the elimination half-life was 0.46 h. For i.v. candoxatrilat, total plasma clearance values were 32, 15, 5.5, 5.8 and 1.9 mL/min/kg for the mouse, rat, rabbit, dog and man, resp. Renal clearance values were 8.7, 7.2, 2.9 and 1.7 mL/min/kg for the mouse, rat, dog and man, resp., and these approximated the resp. glomerular filtration rates. Allometric scaling with respect to body weight across the species allowed reasonable prediction of the above 2 clearance parameters in man.

This literature about this compound(3685-23-2)Recommanded Product: cis-4-Aminocyclohexane carboxylic acidhas given us a lot of inspiration, and I hope that the research on this compound(cis-4-Aminocyclohexane carboxylic acid) can be further advanced. Maybe we can get more compounds in a similar way.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

The influence of catalyst in reaction 3685-23-2

This literature about this compound(3685-23-2)Quality Control of cis-4-Aminocyclohexane carboxylic acidhas given us a lot of inspiration, and I hope that the research on this compound(cis-4-Aminocyclohexane carboxylic acid) can be further advanced. Maybe we can get more compounds in a similar way.

Johnston, Thomas P.; McCaleb, George S.; Clayton, Sarah D.; Frye, Jerry L.; Krauth, Charles A.; Montgomery, John A. published the article 《Synthesis of analogs of N-(2-chloroethyl)-N’-(trans-4-methylcyclohexyl)-N-nitrosourea for evaluation as anticancer agents》. Keywords: neoplasm inhibitor nitrosourea derivative configuration; anticancer chloroethylmethylcyclohexylnitrosourea analog configuration.They researched the compound: cis-4-Aminocyclohexane carboxylic acid( cas:3685-23-2 ).Quality Control of cis-4-Aminocyclohexane carboxylic acid. Aromatic heterocyclic compounds can be divided into two categories: single heterocyclic and fused heterocyclic. In addition, there is a lot of other information about this compound (cas:3685-23-2) here.

Of several nitrosourea derivatives [X(CH2)2N(NO)CONHR (X = Cl, F; R = substituted cyclohexyl, 2-methyl-1,3-dithian-5-yl or its S, S, S’, S’-tetraoxide)] prepared and tested against murine leukemia L210 almost all were active, giving cure rates ≥50% at ≤LD10 doses. In 4 of the 5 fluoroethyl analogs activity was clearly inferior to the corresponding chloroethyl compounds Most of the more active analogs contained a 4-substituted cyclohexyl group. Activity in relation to structure, partition coefficient, and cis-trans isomerism is discussed.

This literature about this compound(3685-23-2)Quality Control of cis-4-Aminocyclohexane carboxylic acidhas given us a lot of inspiration, and I hope that the research on this compound(cis-4-Aminocyclohexane carboxylic acid) can be further advanced. Maybe we can get more compounds in a similar way.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate