The chemical properties of alicyclic heterocycles are similar to those of the corresponding chain compounds. Compound: 3-Methyl-1H-pyrrole, is researched, Molecular C5H7N, CAS is 616-43-3, about Delayed exchange of hydrogen in imine groups of pyrrole and indole, the main research direction is imine ethanol hydrogen exchange; pyrrole ethanol hydrogen exchange; indole ethanol hydrogen exchange; ionization potential indole pyrrole.Synthetic Route of C5H7N.
The rate of H-D exchange between EtOD and pyrrole (I) or indole (II) in CCl4 was measured by NMR, and the rate constants were calculated from the 1st-order rate equation. The H exchange in NH groups of unsubstituted 5 membered heterocycles in the absence of an electron-donating solvent was slow. The photoionization potentials, Ip, of I, N-methylpyrrole (III), α-methylpyrrole (IV), and β-methylpyrrole were measured. The highest and the smallest Ip change was observed on passing from I to IV, and from I to III, resp. The probable structures of I complexes and I complexes with the alc. were suggested together with the causes of slow H exchange.
In some applications, this compound(616-43-3)Synthetic Route of C5H7N is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.
Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate